

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11) 特許出願公開番号

特開2009-195687

(P2009-195687A)

(43) 公開日 平成21年9月3日(2009.9.3)

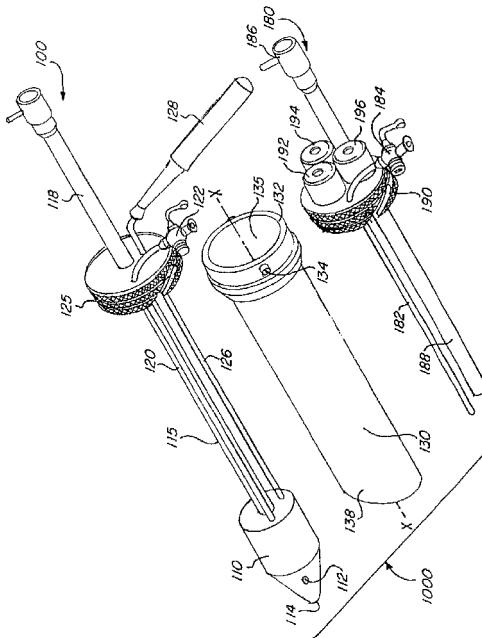
(51) Int.CI.	F 1	テーマコード(参考)
A61B 1/00 (2006.01)	A 61 B 1/00	320A
A61B 1/303 (2006.01)	A 61 B 1/30	4C061
A61B 1/307 (2006.01)	A 61 B 1/00	4C160
A61B 1/31 (2006.01)	A 61 B 17/32	334A
A61B 17/32 (2006.01)		

審査請求 有 請求項の数 35 O L 外国語出願 (全 51 頁)

(21) 出願番号 特願2009-14716 (P2009-14716)
 (22) 出願日 平成21年1月26日 (2009.1.26)
 (31) 優先権主張番号 61/062,162
 (32) 優先日 平成20年1月24日 (2008.1.24)
 (33) 優先権主張国 米国(US)

(71) 出願人 509025946
 カール・ストゥツ・ゲーエムベーハー・ウント・コ・カーゲー
 ドイツ・D-78532・トゥットリンゲン・ミッテルシュトラーセ・8
 (74) 代理人 100064908
 弁理士 志賀 正武
 (74) 代理人 100089037
 弁理士 渡邊 隆
 (74) 代理人 100108453
 弁理士 村山 靖彦
 (74) 代理人 100110364
 弁理士 実広 信哉

最終頁に続く


(54) 【発明の名称】経肛門内視鏡小手術 (TRANSDAILENDO SCOPIC) のための手術用肛門鏡

(57) 【要約】

【課題】外科医が閉塞具を用いて経肛門内腔を膨張させることと、同様に同時に光学装置を用いて経肛門内腔の患部を目視することが可能な医療機器及び方法を提供すること。

【解決手段】経肛門内視鏡外科手術のための手術キット及び方法に関する。医療機器は、吹入チャネル及び光学装置のための管部を有する閉塞先端部を有する。医療機器は、吹入チャネルと光学装置のための管部とを有し、圧力システムが使用され、補助ツールは、腫瘍を経肛門内腔から除去するために使用される。手術キット及び医療機器を個別かつ/または連続して使用するための方法に関し、上記手術キット及び医療機器は、身体の生来の開口部を用いることによって経肛門内腔にアクセスするために使用される。

【選択図】図1

【特許請求の範囲】**【請求項 1】**

吹入チャネルと、
光学装置の挿入のための管部と、
閉塞先端部と、
を備え、

前記閉塞先端部は、前記吹入チャネルの少なくとも一部を受けるための第1経路と、前記管部の少なくとも一部を受けるための第2経路と、を有することを特徴とする医療機器。
。

【請求項 2】

前記管部は、前記光学装置のための人工的な光源を必要としないことを特徴とする請求項1に記載の医療機器。

【請求項 3】

前記吹入チャネル及び前記管部は、前記閉塞先端部内に固定されていることを特徴とする請求項1に記載の医療機器。

【請求項 4】

ハウジングをさらに備えることを特徴とする請求項1に記載の医療機器。

【請求項 5】

前記吹入チャネル及び前記管部に取り付けられる突起素子をさらに備え、
前記突起素子は、前記ハウジングに取付け可能であることを特徴とする請求項4に記載の医療機器。
20

【請求項 6】

前記ハウジングは、前記吹入チャネル及び前記管部をほぼ収容することを特徴とする請求項5に記載の医療機器。

【請求項 7】

前記閉塞先端部は、弾丸型をなすことを特徴とする請求項1に記載の医療機器。

【請求項 8】

前記突起素子は、キャップ型をなすことを特徴とする請求項1に記載の医療機器。

【請求項 9】

ハンドルをさらに備えることを特徴とする請求項1に記載の医療機器。
30

【請求項 10】

当該医療機器は、経肛門内腔に吹き入れるためかつ膨張させるために使用されることを特徴とする請求項1に記載の医療機器。

【請求項 11】

ハウジングと、
吹入チャネルと、
光学素子を挿入するための管部と、
突起素子と、
を備え、

前記突起素子は、前記吹入チャネル及び前記管部を受け、
前記突起素子は、前記ハウジングに取り付けられて前記ハウジング内の圧力を封止することを特徴とする医療機器。
40

【請求項 12】

圧力システムをさらに備え、
前記圧力システムは、前記ハウジング内の圧力を維持しながら、補助ツールが前記突起素子を通じて前記ハウジング内に挿入されることを可能とすることを特徴とする請求項1に記載の医療機器。

【請求項 13】

前記圧力システムは、直列で使用される少なくとも1つのガスケット及び少なくとも1つのバルブを有することを特徴とする請求項12に記載の医療機器。
50

【請求項 14】

前記圧力システムは、1以上のガスケットを有することを特徴とする請求項12に記載の医療機器。

【請求項 15】

前記圧力システムは、1以上のバルブを有することを特徴とする請求項12に記載の医療機器。

【請求項 16】

前記突起素子は、キャップ型をなすことを特徴とする請求項11に記載の医療機器。

【請求項 17】

前記管部は、直線状であることを特徴とする請求項11に記載の医療機器。

10

【請求項 18】

前記補助ツールは、湾曲していることを特徴とする請求項12に記載の医療機器。

【請求項 19】

吹入チャネルと、光学装置の挿入のための管部と、閉塞先端部と、を有し、

前記閉塞先端部が、前記吹入チャネルの少なくとも一部を受けるための第1経路と、前記管部の少なくとも一部を受けるための第2経路と、を有する第1医療機器と、

吹入チャネルと、光学装置の挿入のための管部と、突起素子と、を有し、前記突起素子が前記吹入チャネル及び前記管部を受ける第2医療機器と、

前記第1医療機器及び前記第2医療機器を受けるハウジングと、
を備え、

20

前記第1医療機器及び前記第2医療機器の1つのみは、一定時間前記ハウジングによって受けられ、

前記第2医療機器の前記突起素子は、前記ハウジング内の圧力を封止することを特徴とする手術キット。

【請求項 20】

前記第2医療機器は、前記ハウジング内の圧力を維持しながら、前記第2医療機器の前記突起素子を介した前記ハウジング内への前記補助ツールの挿入を可能とすることを特徴とする請求項19に記載の手術キット。

【請求項 21】

前記ハウジングは、シリンドラ状をなし、

30

前記ハウジングの先端部は、当該ハウジングの長手方向軸に対して傾斜していることを特徴とする請求項19に記載の手術キット。

【請求項 22】

前記ハウジングは、ロック機構を有し、当該ハウジングを前記第1医療機器内へまたは前記第2医療機器内へロックすることを特徴とする請求項19に記載の手術キット。

【請求項 23】

前記ハウジングは、前記第1医療機器または前記第2医療機器をほぼ収容することを特徴とする請求項19に記載の手術キット。

【請求項 24】

補助ツールは、湾曲していることを特徴とする請求項19に記載の手術キット。

40

【請求項 25】

前記第1医療機器及び前記第2医療機器の前記光学装置の挿入のための前記管部は、直線状であることを特徴とする請求項19に記載の手術キット。

【請求項 26】

経肛門外科手術のための方法であって、

医療機器を経肛門内腔内へ導入する工程を備え、

前記医療機器は、閉塞具に取り付けられる直腸鏡を備え、

前記閉塞具は、前記経肛門内腔の膨張のために使用され、

前記閉塞具は、吹き入れのための第1経路と、光学装置のための第2経路と、を有することを特徴とする方法。

50

【請求項 27】

前記直腸鏡を前記経肛門内腔内に保持しながら、前記医療機器から前記閉塞具を取り外す工程をさらに備えることを特徴とする請求項26に記載の方法。

【請求項 28】

作業素子を前記直腸鏡に取り付ける工程をさらに備え、

前記作業素子は、前記直腸鏡内の圧力を封止することを可能とする封止機構を有することを特徴とする請求項27に記載の方法。

【請求項 29】

前記封止機構は、前記直腸鏡及び前記経肛門内腔内の圧力を維持しながら、ツールを前記直腸鏡を介して前記経肛門内腔内に挿入することを可能とすることを特徴とする請求項28に記載の方法。

10

【請求項 30】

前記封止機構は、直列に使用される少なくとも1つのガスケット及び少なくとも1つのバルブを有することを特徴とする請求項29に記載の方法。

【請求項 31】

基端部及び先端部を有する経路を有する面を備え、

前記経路は、当該経路の前記基端部にある第1部材と、当該経路の前記先端部にある第2部材と、を有し、

前記経路は、当該経路の前記基端部及び前記先端部の間の圧力低下を防ぎ止め、

前記経路は、機器を受けるように構成されていることを特徴とする封止システム。

20

【請求項 32】

第1位置及び第2位置を有し、

前記第1位置において、前記第2部材は、閉塞されて前記経路内の圧力低下を防ぎ止め、

前記第2位置において、前記第1部材が封止して前記経路内の圧力低下を防ぎ止めるとすぐ、前記機器は、前記第2閉鎖部材を開放しながら、前記第1部材及び前記第2部材を介して前記経路内に挿入されることを特徴とする請求項31に記載の封止システム。

【請求項 33】

第3位置において、前記機器は、前記経路から取り外され、

前記機器が前記第1部材ではなく前記第2部材を通って取り外されるとすぐ、前記第2部材は、閉鎖して前記経路内の圧力低下を防ぎ止めることを特徴とする請求項32に記載の封止システム。

30

【請求項 34】

前記第1部材は、ガスケットであることを特徴とする請求項31に記載の封止システム。

【請求項 35】

前記第2部材は、バルブであることを特徴とする請求項31に記載の封止システム。

【発明の詳細な説明】**【技術分野】****【0001】**

関連出願の相互参照

本願は、2008年1月28日に出願された仮特許出願番号61/062162号の合衆国法典第35巻特許法第119条(e)に基づく利益を主張する。

40

【0002】

本発明は、経肛門内視鏡小手術(TRANSANAL ENDOSCOPIC)法のための装置及び方法に関する。より具体的には、本発明は、目視のための光学素子と、膨張のための密閉装置及び吹入チャネルと、経肛門内腔(transanal cavity)の圧力を維持するための圧力システムと、を有する医療機器であって、外科医が医療機器を介して補助ツールを挿入、使用して内腔から腫瘍を除去することを可能とする医療機器に関する。さらに、本発明は、器具を使用するための方法に関する。

50

【背景技術】

【0003】

経肛門内視鏡小手術(TEM)の技術は、1983年から臨床用途で利用可能とされている。この技術は、現在、内視鏡手術において1つのポートのみのシステム(only one-port system)であり、このシステムによって、身体の生来の開口を用いた対象組織への直接的な管腔内へのアプローチが存在する。この技術は、直腸領域または肛門にある直腸癌、より詳細には結腸癌または腸の癌を引き起こす癌細胞を除去することにおいて有用である。

【0004】

TEMは、外科医が直腸鏡として知られている内視鏡を用い、かつ個人の経肛門内腔にアクセスすることによって外科手術を行うことを必要とする。このため、外科医は、直腸鏡の使用を介して患部にアクセスできる。直腸鏡は、短く(10インチまたは25cm長)、直線状で、硬い、中空の金属管部であり、通常は端部に取り付けられた小さく軽いバルブを有する。

【0005】

TEMの間において、外科医は、直腸鏡が患部にアクセスするように構成されたツールを使用する。これは、外科医が身体内、具体的には経肛門内腔または結腸への切開を作る必要なく患部にアクセスし、患部の癌領域にアクセスすることを可能とする。このため、これは、患者により大きな安心及び快適さをもたらし、同様に患部にアクセスするための外科手術を必要とする患者よりもより安価かつ低侵襲な処置である。さらに、手術の切開を必要とする外科手術は、切開が感染の危険性を増大しつつ他の副作用を有することから、患者の身体により損傷を与え、同時に患者にとって高い危険性を有する手術となる。このため、経肛門内視鏡小手術(TEM)は、患者にとって合併症を起こす可能性の低い有用な手術法である。特に、TEMは、腺腫の直腸腫瘍及び早期直腸癌を有する患者にとって有益な方法である。

【0006】

TEM手術を用いて、補助ツールは、直腸鏡のシリンドラ状部を介して経肛門内腔内へ導入される。これら補助ツールは、医者によって使用され、患部を除去及び治療する。しかしながら、経肛門内腔において補助ツールを使用することが外科医にとって困難であるという問題が存在する。1つの問題は、患部で作業するときに経肛門内腔内を目視することが困難となるため、視野が限られることである。他のこのような問題は、直腸鏡を経肛門内腔内に挿入することと、経肛門内腔を膨張状態で維持しながら内腔内で作業することが容易となるように圧力封止を維持することと、に関する。

【0007】

従来技術において、直腸鏡は、光学装置を有するように設計されており、外科医が患部の癌領域を拡大して目視することが可能となる。具体的には、ボーベル(Boebel)らの特許文献1は、ボーベルが光学素子を導入する機能を有するチャネルを教示していることから、この機能を実行する直腸鏡を教示している。しかしながら、ボーベルは、直腸鏡に関して外科医が有する第2の問題に苦しんでおり、この問題は、経肛門内腔への直腸鏡の挿入に関する。特に、ボーベルは、直腸鏡の挿入を容易にする閉塞先端部を開示していない。

【0008】

経肛門内腔への直腸鏡の快適さを得るため、外科医は、一般に閉塞具を用いる。閉塞具は、直腸鏡の中央の取外し可能なコアであり、肛門または他の開口内への先端部の挿入を容易にする。

【0009】

直腸鏡検査において、直腸鏡は、潤滑化されて直腸内に挿入される。閉塞具は、一般に丸い端部を有し、端部は、機器の先端の開口部を通って突出する。経肛門内腔内へ挿入されると、閉塞具は、経肛門内腔を膨張させ、これにより、外科医がより容易に内腔にアクセスすることを可能とする。

【0010】

10

20

30

40

50

従来技術において、外科医が経肛門内腔を目視したい場合、閉塞具は、引き抜かれ、いったん閉塞具が取り除かれると、外科医は、経肛門内腔の内部の阻害されない視野を有する。

【0011】

このため、従来技術は、外科医が一連の工程を有する方法及び装置を教示しており、一連の工程は、第1に、外科医が経肛門内腔内への直腸鏡の容易な挿入のために閉塞具を使用することと、第2に、外科医が閉塞具を取り除くことと、第3に、外科医が患部である経肛門内腔の内部を目視するために直腸鏡に光学素子を挿入しなければならないことと、である。この一連の工程は、外科医にとって着手することに問題があるかつ困難である。

【0012】

従来技術の設計は、取外し可能な部分を有する直腸鏡を開発することによってこの問題を解決するように試みられている。これは、外科医が閉塞具を有する機器を直腸鏡に取り付けることを可能とする。いったん経肛門内腔が膨張されると、外科医は、閉塞具機器を取り外して閉塞具を有さない機器と交換し、これにより経肛門内腔へのアクセスを阻害されなくなる。

【0013】

しかしながら、これら方法を用いると、外科医は、まず閉塞具を用いて経肛門内腔を膨張させ、直腸鏡を経肛門内腔内に留めたまま取外し可能な閉塞具を取り外さなければならない。そして、外科医は、光学装置を挿入して患部を見つける。この光学装置は、直腸鏡に取外し可能に連結されている。

【0014】

そのため、要求されることは、外科医が閉塞具を用いて経肛門内腔を膨張させることと、同様に同時に光学装置を用いて経肛門内腔の患部を目視することとの双方を可能とする発明である。これは、患部を見出すことと、それに応じて直腸鏡の位置付けを容易にし、閉塞具を用いずかつ補助ツールを用いて第2の光学装置を挿入するときに、直腸鏡は、患部に対して良好に位置付けられる。

【0015】

さらに、ボーベルのような従来技術は、身体の内腔を膨張させるための吹入チャネルを開示している。吹き入れは、二酸化炭素のような不活性な毒性のないガスであって身体の内腔に導入されて内腔を膨張させるガスを用いる。吹き入れは、一般的な方法であり、圧縮空気を経肛門内腔に導入し、これにより経肛門内腔を膨張させて検査手術中の障害物を低減する。

【0016】

ボーベルのような従来技術は、吹入チャネルを開示しているが、従来技術は、閉塞具と共に使用した吹入チャネルまたは吹き入れのための経路を有する閉塞具を開示していない。それどころか、従来技術は、外科医が吹入チャネルまたは閉塞具のいずれかを適用することを選択することを必要としており、双方の構成部材を有する機器を選択していない。

【0017】

このため、要求されることは、外科医が同時に閉塞具を使用して経肛門内腔を膨張させながら経肛門内腔に吹き入れできる発明である。

【0018】

経肛門内腔が吹き入れられると、圧力は、内腔内で上昇する。膨張状態にある経肛門内腔を維持するため、上昇した圧力を維持することは重要である。問題は、吹入処理中に供給される二酸化炭素または他の不活性ガスが経肛門内腔を介して漏洩する場合に生じる。特に、ボーベルは、封止機構を導入して加圧されたガスが経肛門内腔から移動されることを防止している。

【0019】

しかしながら、ボーベル及び従来技術の他のデザインは、補助ツールが使用されるときに問題が生じるため、限界がある。特に、補助ツールが使用されると、圧力は開放され、圧力は、膨張された経肛門内腔に寸法における減少を引き起こす。

10

20

30

40

50

【0020】

ボーベルのデザインは、キャリア素子を有する封止素子を教示しているが、取付部品に融合された封止素子を教示していない。さらに、ボーベルは、ガスケット及びバルブのタイプの融合された組立体であって補助ツールが封止チャンバを形成するためにガスケット及びバルブを通じて統一して補助ツールを開示していない。

【0021】

そのため、要求されることは、ガスケット及びバルブの圧力システムであって補助ツールが容易かつ経肛門内腔内及び直腸鏡のハウジング内の封止圧力を開放することなく使用される圧力システムを有することである。さらに、光学装置と共に使用される閉塞具を有すること及び吹入チャネルと同時に使用される閉塞具を有することは、望ましい。

10

【先行技術文献】**【特許文献】****【0022】**

【特許文献1】米国特許第6458077号明細書

【発明の概要】**【発明が解決しようとする課題】****【0023】**

したがって、本発明の目的は、外科医が閉塞具を用いて経肛門内腔を膨張させることと、同様に同時に光学装置を用いて経肛門内腔の患部を目視することと、が可能な医療機器及び方法を提供することである。本発明のさらなる目的は、外科医が同時に閉塞具を使用して経肛門内腔を膨張させながら経肛門内腔に吹き入れることが可能な医療機器及び方法を提供することである。本発明のさらなる目的は、ガスケット及びバルブを有する圧力システムの組立体であって補助ツールが容易かつ経肛門内腔内及び直腸鏡のハウジング内の圧力を開放することなく使用される組立体のための装置及び方法を提供することである。

20

【課題を解決するための手段】**【0024】**

これら及び他の目的は、医療機器であって、吹入チャネルと、光学装置の挿入のための管部と、閉塞先端部と、を備え、上記閉塞先端部が、上記吹入チャネルの少なくとも一部を受けるための第1経路と、上記管部の少なくとも一部を受けるための第2経路と、を有する医療機器を提供することによって達成される。

30

【0025】

医療機器は、吹き入れが経肛門内腔への閉塞先端部の挿入と同時に発生することをさらに可能とする。さらに、医療機器における管部は、光学装置のための特有の光源を必要としない。

【0026】

好ましい形態において、吹入チャネル及び管部は、閉塞先端部内に固定されている。これは、吹入チャネル及び管部の基端部または先端部で生じる。

【0027】

医療機器は、一般にシリンドラ状をなすハウジングをさらに備えてよい。医療機器は、突起素子をさらに備えてよく、突起素子は、ハウジングに取り付けられる。突起素子は、好ましい形態においてキャップ状をなす。さらに、ハウジングは、吹入チャネル及び管部をほぼ収容し、吹入チャネル及び管部は、ハウジングのシリンドラ状部の内側に収容される。

40

【0028】

好ましい形態において、閉塞先端部は、弾丸型をなす。

【0029】

また、医療機器は、ハンドルを有してもよい。医療機器の用途は、これに限定されないが、経肛門内腔の吹き入れ及び膨張を含む。

【0030】

第2の形態において、本発明は、医療機器であって、ハウジングと、吹入チャネルと、

50

光学素子を挿入するための管部と、突起素子と、を備え、突起素子が、吹入チャネル及び管部を受け、突起素子が、ハウジングに取り付けられてハウジング内の圧力を封止する医療機器を提供する。

【0031】

医療機器は、ハウジング内の圧力を維持しながら、補助ツールが突起素子を通ってハウジング内に挿入されることを可能とする圧力システムをさらに備える。

【0032】

好みしい形態において、圧力システムは、直列で使用される少なくとも1つのガスケット及び少なくとも1つのバルブを有する。他の形態において、圧力システムは、1以上のガスケットを有し、他の形態において、圧力システムは、1以上のバルブを有する。ガスケット及びバルブは、共に作業して補助ツールの挿入を可能とする圧力チャンバを形成することが好みしい。

10

【0033】

医療機器の突起素子は、キャップ状をなしてもよい。医療機器における管部は、一般的に直線状であり、補助ツールは、湾曲している。

【0034】

本発明の第3の形態において、本発明は、手術キットであって、吹入チャネルと、光学装置の挿入のための管部と、閉塞先端部と、を有し、閉塞先端部が、吹入チャネルの少なくとも一部を受けるための第1経路と、管部の少なくとも一部を受けるための第2経路と、を有する第1医療機器と、吹入チャネルと、光学装置の挿入のための管部と、突起素子と、を有し、突起素子が、吹入チャネル及び管部を受ける第2医療機器と、第1医療機器及び第2医療機器を受けるハウジングと、を備え、第1医療機器及び第2医療機器の1つのみは、一定時間ハウジングによって受けられ、第2医療機器の突起素子は、ハウジング内の圧力を封止する手術キットを提供する。

20

【0035】

第2医療機器は、ハウジング内の圧力を維持しながら、第2医療機器の突起素子を介したハウジングへの補助ツールの挿入を可能とする。

【0036】

好みしい形態において、ハウジングは、好みしくはシリンドラ状をなし、好みしくはハウジングの先端部は、ハウジングの長手方向軸に対して傾斜している。

30

【0037】

ハウジングは、ロック機構を有し、ハウジングを第1医療機器内へまたは第2医療機器内へロックする。ハウジングは、第1または第2医療機器をほぼ収容する。

【0038】

好みしい形態において、補助ツールは、湾曲しており、管部は、第1及び第2医療機器双方において直線状である。

【0039】

本発明の第4の形態は、経肛門内腔内に医療機器を導入するための方法であって、医療機器が、閉塞具に取り付けられる直腸鏡を備え、閉塞具が、経肛門内腔の膨張のために使用され、閉塞具が、吹き入れのための第1経路と、光学装置のための第2経路と、を有する方法を提供する。

40

【0040】

方法は、直腸鏡を経肛門内腔内に保持しながら、医療機器から閉塞具を取り外す工程をさらに備える。

【0041】

方法は、作業素子を直腸鏡に取り付ける工程をさらに備え、作業素子は、直腸鏡内の圧力を封止することを可能とする封止機構を有する。封止機構は、作業素子を直腸鏡に取り付ける工程をさらに備え、作業素子は、直腸鏡内の圧力を封止することを可能とする封止機構を有する。

【0042】

50

封止機構は、直列に使用される少なくとも1つのガスケット及び少なくとも1つのバルブを有する。封止機構は、封止機構を実施するために少なくとも1つのガスケット及びバルブを有する。

【0043】

本発明の第5の形態は、封止システムであって、基端部及び先端部を有する経路を有する面を備え、経路は、当該経路の基端部にある第1部材と、当該経路の先端部にある第2部材と、を有し、経路は、当該経路の基端部及び先端部の間の圧力低下を防ぎ止め、経路は、機器を受けるように構成されている封止システムを提供する。

【0044】

封止機構は、第1位置及び第2位置を有し、第1位置において、第2部材は、閉塞されて経路内の圧力低下を防ぎ止め、第2位置において、第1部材が封止して経路内の圧力低下を防ぎ止めるとすぐ、機器は、第2閉鎖部材を開閉しながら、第1部材及び第2部材を介して上記経路内に挿入される。

【0045】

封止システムは、第3位値をさらに有し、前記機器は、前記経路から取り外され、前記機器が前記第1部材ではなく前記第2部材を通じて取り外されるとすぐ、前記第2部材は、閉鎖して前記経路内の圧力低下を防ぎ止める。

【0046】

封止システムは、第1部材がガスケットであり、第2部材がバルブであってもよい。

【発明の効果】

【0047】

上記形態についての有利点は、経肛門内視鏡切除術を広めることが可能な新規な手術キットに関し、これにより、世界中の病院においてより容易でより安価かつより便利となることである。

【0048】

本発明の他の目的とその特別な機能及び有利点は、以下の図面及び添付の詳細な説明の検討からより明確になるだろう。詳細な説明及び具体例は、本発明の好ましい実施形態を示すが、説明のみを目的としており、本発明の範囲を限定するためではない。

【図面の簡単な説明】

【0049】

【図1】本発明の実施形態におけるハウジング及び医療機器を有する手術キットを示す斜視図である。

【図2】本発明の実施形態におけるハウジング(直腸鏡)を示す斜視図である。

【図3】本発明の図2におけるハウジングを示す右側面図である。

【図4】本発明の図2におけるハウジングを示す左側面図である。

【図5】本発明の実施形態における医療機器を示す斜視図である。

【図6】本発明の図5における医療機器を示す端面図である。

【図7】本発明の図5の拡大図であって閉塞先端部に注目した拡大図である。

【図8】本発明の第2の実施形態における医療機器を示す斜視図である。

【図9】本発明の図8において示された医療機器を示す左側面図であって、スプリングバルブに注目した左側面図である。

【図10】本発明の図8において示された医療機器を示す右側面図であって、ガスケットに注目した右側面図である。

【図11】本発明の組立体を示す斜視図であってハウジング(直腸鏡)及び本発明における図5の医療機器を含む斜視図である。

【図12】本発明の組立体を示す斜視図であってハウジング(直腸鏡)及び本発明における図8の医療機器を含む斜視図である。

【図13】本発明の実施形態における図8の医療機器に接続されたハウジングを有する組立体を示す斜視図であって補助ツールの使用をさらに示す斜視図である。

【図14】図13の斜視図の拡大図であって本発明の実施形態における医療機器へのハウ

10

20

30

40

50

ジングの圧力システム（ガスケット／バルブ）と連結機構とを示す拡大図である。

【発明を実施するための形態】

【0050】

図1を参照すると、本発明の実施形態における手術キット組立体1000が示されている。この手術キット組立体1000は、経肛門手術法のための方法及び装置を提供する。

【0051】

図1は、医療機器100、直腸鏡130及び医療機器180を示す。医療機器100は、閉塞先端部110、吹入チャネル120及び管部115を有する。管部115は、直腸鏡に使用される光学装置について通常必要とされる特別な光源を必要としない。突起素子125は、吹入チャネル120及び管部115を保持して示されており、医療機器100の構造体を形成している。好ましい実施形態において、吹入チャネル120及び管部115は、互いに平行またはほぼ平行で示される。

10

【0052】

好ましい実施形態において、管部115は、直線状であり、補助ツール1500（図13に示す）は、湾曲している。本発明は、特別な角度のついた内視鏡の必要性を排除し、代わりに以前から存在する5mm直径、10mm直径または他の直径の内視鏡は、使用されうる。

【0053】

図1は、第1経路112を収容する閉塞先端部110をさらに示しており、第1経路112は、閉塞先端部110の本体部内に示される。第1経路112は、軸方向で走って示される吹入チャネル120と対応して示されている。吹入チャネル120は、端部分122を有しており、端部分122は、突起素子125から離間するように曲げられており、ガスを導入すること及び経肛門内腔1100（図示略）に吹き込むことが容易となる。吹入チャネル120は、突起素子125を貫通して示されており、突起素子125は、吹入チャネル120を保持する。好ましい実施形態において、吹入チャネル120は、突起素子125によって封止されており、圧力は、経肛門内腔1100から吹入チャネル120及び突起素子125の接続部を通って開放されない。他の好ましい実施形態において、吹入チャネル120は、突起素子125に取り付けられている。

20

【0054】

また、閉塞先端部110は、管部115の先端部と対応する第2経路114を有し、管部115は、吹入チャネル120と平行に軸方向で走って示されている。第2経路114は、閉塞先端部110の本体部内に示されている。管部115は、突起素子125を貫通して示されている。管部115の端部には、素子118が示されており、素子118は、管部115の基端側である。管部115は、光学素子1200（図示略）の挿入のための手段を提供する。光学装置1200は、内視鏡、カメラ、またはこの技術で使用される他のこのような光学装置であってもよい。光学装置1200は、コンピュータに接続されてもよく、経肛門内腔1100の視野は、手術用モニタに表示されてもよい。

30

【0055】

上述のように、閉塞先端部110は、吹入チャネル120の少なくとも一部を収容するための第1経路112と、管部115の少なくとも一部を収容するための第2経路114と、を有する。

40

【0056】

好ましい実施形態において、手術キット1000は、経肛門外科手術のための任意のタイプの入手可能な内視鏡及び腹腔鏡のCO₂吹入器と共に使用されてもよい。

【0057】

他の好ましい実施形態において、管部115は、突起素子125によって封止されており、圧力は、経肛門内腔1100から管部115及び突起素子125の接続部を通って開放されない。他の好ましい実施形態において、管部115は、突起素子125に取り付けられてもよい。

【0058】

50

突起素子 125 は、キャップのような形状であってもよい。キャップは、ハウジング 130 が突起素子 125 に接続されることを可能とし、ハウジング 130 が吹入チャネル 120 及び管部 115 をほぼ収容することを可能とする。

【0059】

状況に応じて、医療機器 100 は、閉塞先端部 110 及び突起素子 125 を接続して示される安定柱部 126 を有する。安定柱部 126 は、ハンドル 128 に接続して示されており、ハンドル 128 は、突起素子 125 に接続され、それにより、安定柱部 126 は、必要なくなる。安定柱部 126 及びハンドル 128 の双方とも、本発明の範囲及び精神内において不可欠でないが、好ましい実施形態において使用される。ハンドル 128 は、ハウジング 130 から医療機器 100 を取り外すために使用されうる。安定柱部 126 は、医療機器 100 に構造的な安定性をもたらし、閉塞先端部 110 及び突起素子 125 の間の機械的接続を維持する。

10

【0060】

また、図 1 は、ハウジング 130 を示しており、ハウジング 130 は、主として直腸鏡として言及される。ハウジング 130 は、基端部 132 及び先端部 138 を有する。先端部 138 は、ハウジング 130 の長手方向軸 X と垂直でない方向に曲げられている。角度は、垂直から 80 度まで、またはハウジング 130 が経肛門内腔 1100 内に挿入されうる任意の角度であってもよく、それでも直腸鏡として機能する。好ましい実施形態において、角度は、垂直からほぼ 15 度であり、経肛門内腔 1100 (図示略) 内へのハウジング 130 の快適な挿入を可能とする。

20

【0061】

ハウジング 130 の基端部 132 は、連結部材 134 を有しており、そのため、医療機器 100 及び医療機器 180 は、ハウジング 130 に固定される。好ましい実施形態において、医療機器 100 及び医療機器 180 双方は、ハウジング 130 内にロックされるが、これは必要でない。

20

【0062】

また、ハウジング 130 の基端部 132 は、直径において次第に増大しているが、これは必要でない。さらに、ハウジング 130 の内径 135 は、示されており、内径 135 は、ハウジング 130 の軸方向の長さにわたって同等である。しかしながら、本発明の他の実施形態において、内径 135 は、ハウジング 130 の軸方向の長さにわたって変化してもよい。

30

【0063】

ハウジング 130 は、主として滑らかなまたは研磨された表面を有し、挿入中において、経肛門内腔 1100 は、刺激されないまたは損傷されない。ハウジング 130 は、金属合金、ポリマーおよび当技術分野で知られている他のこののような材料を含むさまざまな材料で形成されてもよい。

【0064】

図 1 は、さらに医療機器 180 を表示している。医療機器 180 は、突起素子 190 に接続される吹入チャネル 182 を有する。吹入チャネル 182 は、端部品 184 と共に示されており、端部品 184 は、経肛門内腔 1100 (図示略) の吹き入れを可能とする。

40

【0065】

医療機器 180 は、突起素子 190 に接続される管部 188 をさらに有しており、管部 188 は、光学装置を挿入するための端部品 186 を有する。光学装置は、内視鏡、カメラまたは当技術分野で使用される他のこののような光学装置であってもよい。光学装置は、コンピュータに接続されており、経肛門内腔 1100 (図示略) の視野は、手術用モニタに示される。

【0066】

さらに、管部 188 の端部品 186 は、外科医に経肛門内腔 1100 の視野を提供しながら示される。ガラスまたはプリズムは、管部の端部品 186 または管部 188 内に挿入されており、外科医が管部 188 と垂直またはほぼ垂直な方向を視認することを可能とす

50

る一方、それでも経肛門内腔 1100 の視野を阻害しない。

【0067】

突起素子 190 は、ガスケット 192、194 及び 196 をさらに有する。より多くまたはより少ないガスケットは、本発明の範囲及び精神を維持しながら使用されてもよい。図示の好ましい実施形態において、3 つのガスケットは、使用されている。

【0068】

突起素子 190 は、スプリングバルブ 910、920 及び 930 (図 9 参照) をさらに有する。これらスプリングバルブは、図 1 に示すように、主としてガスケット 192、194 及び 196 に対応している。より多いまたはより少ないスプリングバルブは、本発明の範囲及び精神を維持しながら使用されてもよい。しかしながら、図示の好ましい実施形態では、これらスプリングバルブ 910、920 及び 930 が使用される。

10

【0069】

ガスケット 192、194 及び 196 とスプリングバルブ 910、920 及び 930 とは、補助ツール 1500 (図 13 及び図 14 に示す) が外科医によって経肛門内腔 1100 内で使用されることを可能とする。ガスケット及びスプリングバルブは、吹き入れられた経肛門内腔 1100 内の圧力を開放することなく補助ツール 1500 を使用することを可能とする。スプリングバルブ 910、920 及び 930 は、ハウジング 130 の内側に開口しており、補助ツール 1500 が突起部 190 を通ってハウジング 130 の内側部分に向けて挿入されるにしたがって迅速に開口される。

20

【0070】

好ましい実施形態において、管部 188 は、突起素子 190 によって封止されており、圧力は、経肛門内腔 1100 から管部 188 及び突起素子 190 の接続部を通って開放されない。他の好ましい実施形態において、管部 188 は、突起素子 190 に取り付けられている。同様に、好ましい実施形態において、吹入チャネル 182 は、突起素子 190 によって封止されており、突起素子 190 に取り付けられていない。

30

【0071】

図 2 は、ハウジング 130 の拡大図を示しており、先端部 138 は、傾斜して示されており、基端部 132 は、次第に増大する直径を有して示されている。先端部 138 は、ハウジング 130 の長手方向軸 X と垂直でなく示されている。これは、経肛門内腔 1100 への容易なアクセスを可能とする。

【0072】

図 3 は、同様に直腸鏡として知られているハウジング 130 の左端部を示しており、図 4 は、ハウジング 130 の右端部を示す。内径 135 は、示されており、また、外径 310 は、内径 135 よりも大きく示されている。基端部 132 は、ハウジング 130 を医療機器 100 及び医療機器 180 に取り付ける連結手段 134 を有する。異なるタイプの連結手段 134 は、ネジ作用部を含んで使用されてもよく、雄部分は、雌部分に入る。他のタイプの連結手段 134 は、吸込部と、雄部分を雌部分に嵌合する溝部と、ハウジング 130 を医療機器 100 及び医療機器 180 に取外し可能に接続する当技術分野で知られている任意の他のタイプの結合機構と、を含む。

30

【0073】

図 5 は、医療機器 100 の斜視図を示す。具体的には、図 5 は、閉塞先端部 110 を取り上げている。閉塞先端部 110 は、第 1 経路 112 を有しており、第 1 経路 112 は、閉塞先端部 110 の本体部の内側に示されている。出口点 520 は、示されており、この点において、二酸化炭素または他の不活性ガスは、経肛門内腔 1100 内へ吹き入れられる。

40

【0074】

また、図 5 は、管部 115 の先端部と対応する第 2 経路 114 を取り上げている。第 2 経路 114 は、出口点 510 を有し、閉塞先端部 110 のこの点において、光学装置は、使用されて経肛門内腔 1100 の患部を見る。この装置は、外科医が閉塞具 110 を使用して同様に内腔を膨張させながら経肛門内腔 1100 に吹き入れる一方、同時に光学装置

50

を有する管部 115 を用いて患部を目視することを可能とする。

【0075】

本発明の他の好ましい実施形態において、医療機器 100 は、閉塞先端部 110 及び吹入チャネル 120 を有しているが、管部 115 を有していない。本発明の他の好ましい実施形態において、医療機器 100 は、閉塞先端部 110 及び管部 115 を有しているが、吹入チャネル 120 を有していない。しかしながら、好ましい実施形態では、医療機器 100 の構成部材として、閉塞先端部 110、吹入チャネル 120 及び管部 115 を有している。

【0076】

図 6 は、医療機器 100 の端部を示す図である。ここで、吹入チャネル 120 の端部品 122 は、示されており、経肛門内腔 1100 に吹き入れるガスは、導入される。同様に、ハンドル 128 は、示されており、ハンドル 128 は、医療機器 100 をハウジング 130 に挿入し固定するために使用される。また、ハンドル 128 は、医療機器 100 を取り付けられたハウジング 130 と共に経肛門内腔 1100 内へ導入するために使用される。

【0077】

図 7 は、ハウジング 130 内で閉鎖された閉塞先端部 110 の拡大図を表示しており、医療機器 100 は、ハウジング 130 によってほぼ覆われて示されている。ここで、吹入チャネル 120 は、閉塞先端部 110 の第 1 経路 112 に対応して示されており、管部 115 は、閉塞先端部 110 の第 2 経路 114 と対応して示されている。また、閉塞先端部 110 は、示されており、ハウジング 130 は、閉塞先端部 110 の重量を支持する傾斜先端部 138 を有する。

【0078】

図 8 は、医療機器 180 を示している。ここで、ガスケット及びスプリングバルブの組み合わせを有する圧力システム 1600 (図示略) に注目する。

【0079】

また、ポートバルブシステムとして示される圧力システム 1600 は、補助ツール 1500 が直腸鏡 130 と共に使用されて圧力封止を維持することを可能とする。圧力は、外科医が補助ツール 1500 を使用して経肛門内腔 1100 の患部の癌領域を治療するときに、経肛門内腔 1100 で維持される。

【0080】

圧力システム 1600 は、異なるタイプのガスケット及びバルブを使用する。図 9 に示すバルブは、スプリングバルブ 910、920 及び 930 であるが、ソレノイドバルブ、二方バルブ及び三方バルブ、ボールバルブ、水圧 / 空圧バルブ及び当技術分野で周知の他のバルブシステムのような同様に他のタイプのバルブであってもよい。

【0081】

図 9 は、バルブ 910、920 及び 930 を示す図であり、図 10 は、これら対応するガスケット 196、192 及び 194 を示す。本発明の好ましい実施形態において、ガスケット 196、192、194 は、バルブ 910、920、930 と対応して示されているが、これは必要でない。スプリングバルブ 910、920 及び 930 は、主としてハウジング (図 14 に示す) の内側領域 1800 に開口している。

【0082】

図 11 及び図 12 は、手術キット 1000 の組立体を示しており、医療機器 100 及び医療機器 180 は、ハウジング 130 内に組み立てられて示されている。具体的には、図 11 は、手術キット 1000 を示しており、医療機器 100 の吹入チャネル 120 及び管部 115 は、ハウジング 130 によってほぼ閉鎖されて示されている。図 12 は、ハウジング 130 によってほぼ閉鎖されている医療機器 180 の吹入チャネル 182 及び管部 188 を示している。

【0083】

図 13 及び図 14 は、ハウジング 130 に組み立てられた医療機器 180 を示しており

10

20

30

40

50

、圧力システム 1600 の構成部材は、補助ツール 1500 を使用することを可能としながら示されている。

【0084】

図 13において、補助ツール 1500 は、ガスケット 194 / 196 を通過しさらにハウジング 130 を通過して示されている。これは、補助ツール 1500 の端部が経肛門内腔 1100 に到達することを可能とし、外科医が経肛門内腔 1100 の患部を治療することを可能とする。

【0085】

図 14 は、圧力システム 1600 の封止機構の拡大断面図を示しており、圧力チャンバ 1700 は、形成されている。ここで、補助ツール 1500 は、ガスケット 192 / 194 / 196 に入りながら示されている。ガスケット 192 / 194 / 196 は、空気ロック素子 1420 及び 1430 を有しており、空気ロック素子 1420 及び 1430 は、補助ツール 1500 の周囲に封止を形成してハウジング 130 及び / または経肛門内腔 1100 の内側領域 1800 の外方からガスが漏れ出すことを防止する。補助ツール 1500 が圧力チャンバ 1700 を通って挿入されるにしたがって、スプリングバルブ 1410 は、補助ツール 1500 の圧力を介して開放される。補助ツール 1500 がスプリングバルブ 1410 を通過した後、補助ツール 1500 は、ハウジング 130 の内側領域 1800 内に入る。そして、補助ツール 1500 は、補助ツール 1500 がハウジング 130 の先端部 138 に到達するまで、ハウジング 130 の内側領域 1800 を通って押される。そして、補助ツール 1500 は、先端部 138 を通過して経肛門内腔 1100 の患部に当てられる。これは、外科医が患部腫瘍にアクセスすることを可能とする。

10

20

30

40

【0086】

圧力チャンバ 1700 は、ガスケット 192 / 194 / 196 とスプリングバルブ 1410 との組み合わせを介して形成される。これは、封止手段を形成し、ハウジング 130 から出る圧力を防止し、これにより、経肛門内腔 1100 が吹き入れられて膨張されることを維持し、外科医が容易にアクセスして内視鏡手術を行うことを可能とする。さらに、封止手段は、圧力システム 1600 がスプリングバルブ 1410 及びガスケット 192 / 194 / 196 を直列に使用した「空気ロック部」を含むということで、本発明の新規部分である。補助ツール 1500 がハウジング 130 に挿入されていないときに、スプリングバルブ 1410 は、閉鎖位置を維持し、これにより、外部の大気圧からハウジング 130 の内側領域 1800 を封止する。これは、機器が圧力チャンバ 1700 内に挿入されていないときに、圧力チャンバ 1700 内の圧力差を維持する。

【0087】

補助ツール 1500 が圧力チャンバ 1700 内に挿入されると、補助ツール 1500 は、まずガスケット 192 / 194 / 196 を通過し、ガスケット 192 / 194 / 196 は、空気ロック素子 1420 及び 1430 を有する。そして、補助ツール 1500 は、スプリングバルブ 1410 を通過し、スプリングバルブ 1410 を開放させる。この点において、空気ロック素子 1420 及び 1430 は、封止をもたらすように機能し、これにより「空気ロック部」を形成し、ハウジング 130 の内側領域 1800 内の圧力が逃げることを防止する。これは、機器 1500 が圧力チャンバ 1700 内に挿入されるときに圧力チャンバ 1700 内の圧力差を維持する。

【0088】

補助ツール 1500 が取り外されると、補助ツール 1500 は、まずスプリングバルブ 1410 を通って引き抜かれて後退する。補助ツール 1500 が完全にスプリングバルブ 1410 を通って引き抜かれるにしたがって、スプリングバルブ 1410 は閉鎖する。これは、機器がガスケット 192 / 194 / 196 を通るがバルブ 1410 を通らないときに、圧力が開放されることを防止し、圧力チャンバ 1700 内の圧力差を維持する。

【0089】

いったんスプリングバルブ 1410 が閉鎖されると、空気ロック素子 1420 及び 1430 は、開放され、補助ツール 1500 は、ガスケット 192 / 194 / 196 を通って

50

引き抜かれる。したがって、圧力システム 1600 は、スプリングバルブ 1410 が開放または閉鎖位置にあるときの双方において気密を維持し、「空気ロック部」として機能する。

【0090】

したがって、外科医は、第 1 の補助ツール 1500 をガスケット内に挿入し、第 1 の補助ツール 1500 を取り外してハウジング 130 の内側領域 1800 の圧力を開放することなく第 2 の補助ツールを同一のガスケット内に挿入できる。このようにして、外科医は、個別の補助ツールに対応する各ガスケットを有することなく多量の異なる補助ツール 1500 を手術中に使用でき、手術中における増大した柔軟性をもたらす。

【0091】

また、図 14 は、ハウジング 130 の内側領域 1800 を通過する吹入チャネル 182 及び管部 188 を示す。これら構成部材は、吹入チャネル 182 が吹き入れをもたらしあつ管部 188 が経肛門内腔 1100 の患部の視野をもたらすように、患部の経肛門内腔 1100 に導く。これは、外科医が管部 188 にある光学装置を介して患部を目視しながら経肛門内腔 1100 を膨張させたままとすることを可能とする。

【0092】

好みの実施形態において、吹入チャネル 120 は、主として光学機器のための管部 115 よりも薄い。また、吹入チャネル 120 は、洗浄チャネルとして知られている。

【0093】

また、好みの実施形態は、補助ツール 1500 が可撓性を有することを可能とする。また、吹入チャネル 120 及び 182 と管部 115 及び 188 とは、同様に可撓性を有し、内視鏡手術の使用の容易を可能とする。

【0094】

手術キット 1000 及び医療機器 100 及び 180 並びにハウジング 130 は、金属、合金、プラスチック、ポリマーまたは手術機器として使用されることが周知な他のこのような材料で形成されうる。

【0095】

好みの実施形態において、医療機器 100 の突起素子 125 及び医療機器 180 の突起素子 190 は、ハウジング 130 よりも大きい直徑を有しており、ハウジング 130 は、医療機器 100 及び医療機器 180 それぞれに挿入される。本発明についての他の有利点は、医療機器 100 がハウジング 130 から経肛門内腔 1100 及びハウジング 130 の内側領域 1800 内の圧力を開放することなく取り外せることである。

【0096】

本発明は、ハウジング 130 と共に医療機器 100 及び 180 を使用する方法を備える。経肛門外科手術のための方法は、医療機器 3000 (図において参照番号 3000 は付されていない) を経肛門内腔 1100 内に導入する工程を備え、医療機器 3000 は、閉塞素子 110 に取り付けられた直腸鏡 130 を有し、閉塞素子 110 は、経肛門内腔 1100 の膨張に使用され、閉塞素子 110 は、吹き入れのための経路 112 を有する。また、閉塞具は、経肛門内腔 1100 の患部を目視するための第 2 経路 114 を有する。吹入チャネル 120 及び管部 115 は、閉塞具の第 1 経路 112 及び第 2 経路 114 それぞれに対応する。管部 115 は、外科医が患部及び直腸鏡 130 を位置付けることを可能とし、直腸鏡 130 は、患部にアクセスするために正確な位置にある。

【0097】

方法は、経肛門内腔 1100 内の直腸鏡 130 の位置を維持しながら、医療機器 3000 から閉塞素子 110 を取り外す工程をさらに備える。これは、この工程を迅速に実行することを意味し、圧力は、経肛門内腔 1100 から開放されない。

【0098】

方法は、作業素子 180 を経肛門内腔 1100 内に挿入する工程を備え、作業素子 180 は、直腸鏡 130 を取り付け、作業素子 180 は、封止機構を有し、封止機構は、経肛門内腔 1100 及びハウジング 130 内の圧力を維持しながら経肛門内腔 1100 内に補

10

20

30

40

50

助ツール 1500 を挿入することを可能とする。

【0099】

方法は、作業素子 180 の封止機構においてガスケット及びバルブを用いる工程をさらに備える。少なくとも 1 つのガスケットまたはバルブ部材が使用され、好ましくは、方法は、3 つの対応するガスケット及びバルブを使用する工程を有する。方法は、ガスケット及びバルブを直列で使用する工程をさらに備え、圧力は、補助ツール 1500 が腫瘍にアクセスするために使用されるときに経肛門内腔 1100 から開放されない。

【0100】

本発明のさらなる有利点は、経肛門内視鏡切除術を広めることを含み、これにより、世界中の病院においてより容易でより安価かつより便利となることである。

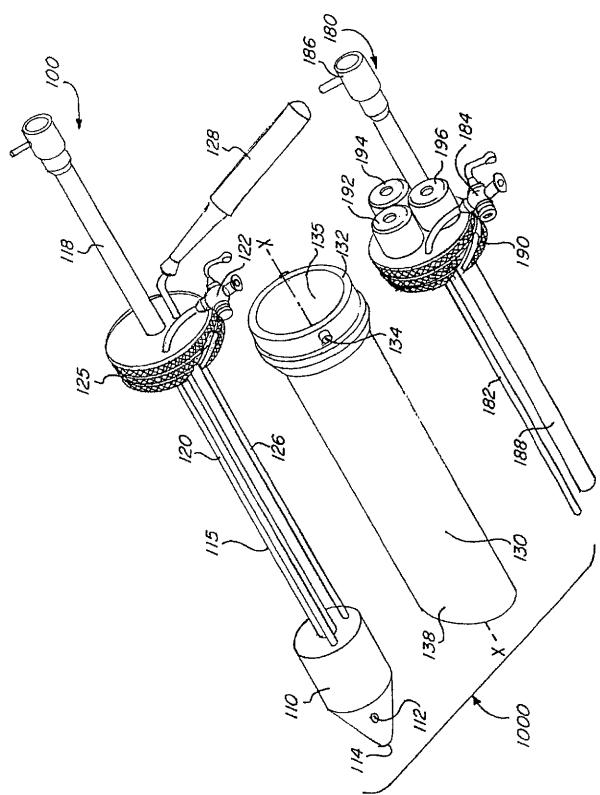
10

【0101】

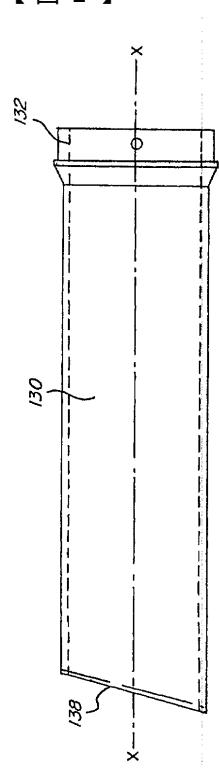
本発明は、その特定の特別な実施形態と共に具体的に記載されているが、これが説明のためであって限定のためでなく、形式及び詳細においてさまざまな変形及び改良がそれに加えて形成されることができ、かつ添付の特許請求の範囲が従来技術が許す限り広げて解釈されることは、理解される。

【0102】

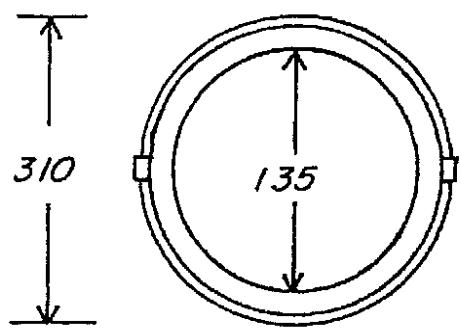
本発明の記載は、実際に単なる例であり、このため、本発明の主旨から逸脱しない変形は、本発明の範囲内にあることを目的とする。このような変形は、本発明の精神及び範囲から逸脱するとしてはみなされない。

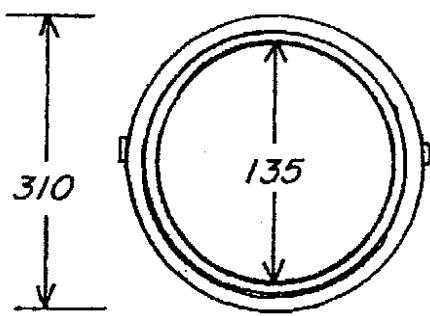

20

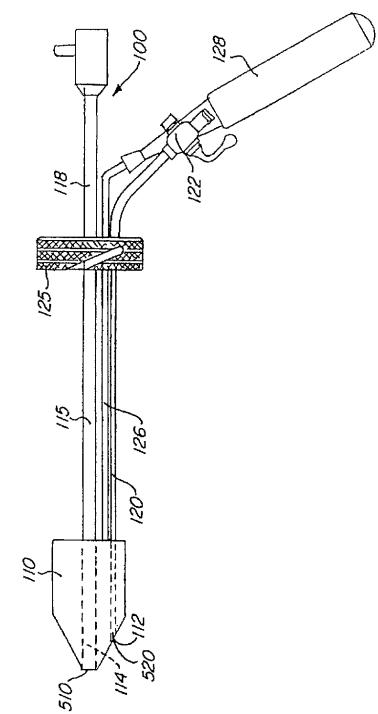
【符号の説明】

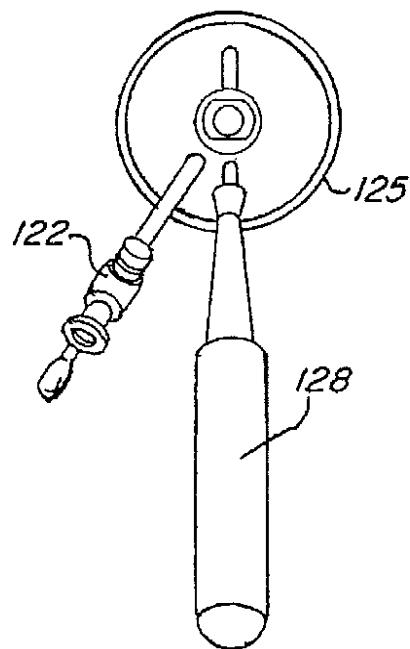

【0103】

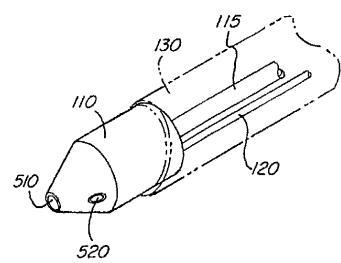
100 医療機器、110 閉塞具、閉塞先端部、閉塞素子、112 第 1 経路、114 第 2 経路、115, 188 管部、120, 182 吹入チャネル、125、190 突起素子、突起部、128 ハンドル、130 ハウジング、直腸鏡、138 傾斜先端部、先端部、180 第 1 医療機器、作業素子、192, 194, 196 ガスケット、910, 1410 スプリングバルブ、バルブ、1000 手術キット、手術キット組立体、1100 経肛門内腔、1200 光学素子、光学装置、1500 機器、補助ツール、1600 圧力システム、3000 第 2 医療機器

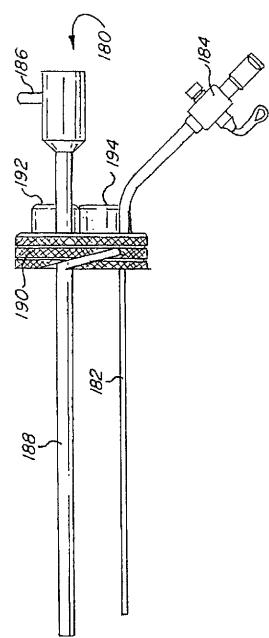

【図1】

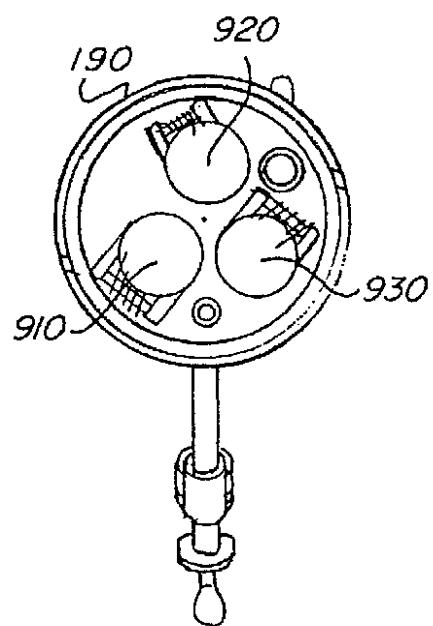

【図2】

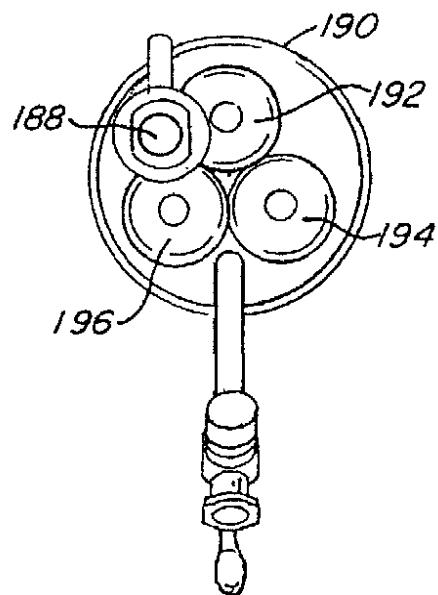

【図3】

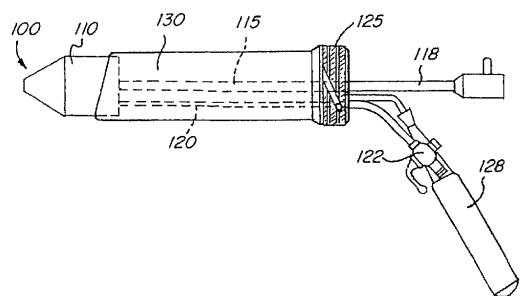

【図4】

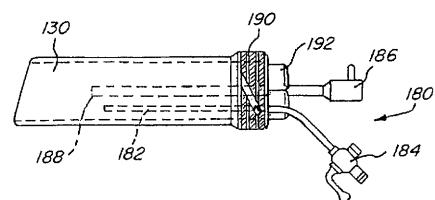

【図5】

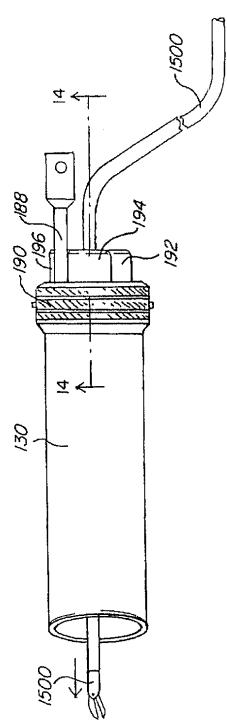

【図 6】

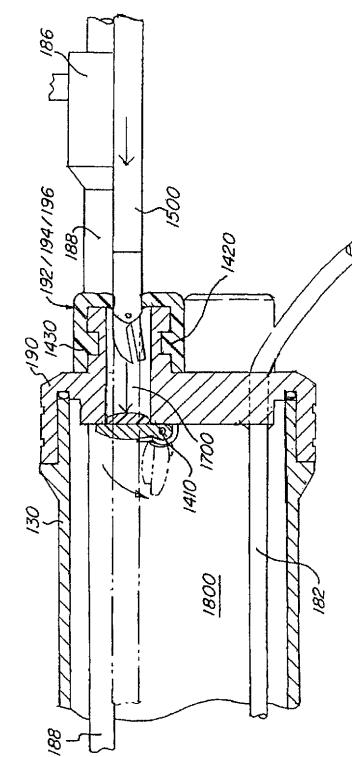

【図 7】


【図 8】


【図 9】


【図 1 0】


【図 1 1】


【図 1 2】

【図 1 3】

【図 1 4】

フロントページの続き

(72)発明者 エフ・セルジオ・ピー・レガダス

ブラジル・60810-180・フォーテールツア・シーラ・ルア・アティラノ・ドウ・マウラ・
430・アパートメント・#200

Fターム(参考) 4C061 AA05 BB00 CC00 DD00 GG22 HH56 JJ06
4C160 FF19 MM43

【外國語明細書】

OPERATING ANOSCOPE FOR TRANSANAL ENDOSCOPIC MICROSURGERY

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present application claims the benefit under 35 U.S.C. §119 (e) of the Provisional Patent Application Serial No. 61/062,162 filed January 24, 2008.

FIELD OF THE INVENTION

[0002] The present invention relates an apparatus and method for transanal endoscopic surgical techniques. More particularly, the present invention involves a medical instrument having an optical element for viewing, an obturator and insufflation channel for expanding, and a pressure system for maintaining the pressure in a transanal cavity, allowing a surgeon to insert and use auxiliary tools through the medical instrument to remove a tumor from the cavity. The invention further relates to a method for using the apparatus.

BACKGROUND OF THE INVENTION

[0003] The technique of transanal endoscopic microsurgery (TEM) has been made available for clinical use since 1983. This technique is currently the only one-port system in endoscopic surgery by which there is a direct endoluminal approach to the target organ by using a natural opening of the body. The technique is useful in removing cancerous cells located in the rectal area or anus, which cause rectal cancer, and more specifically colon cancer or cancer of the intestines.

[0004] TEM involves a surgeon using a rectoscope, also known as a proctoscope, and having the surgeon operate by accessing the transanal cavity of a person. The surgeon is thus able to access the affected region through the use of the rectoscope. A rectoscope a short (10in or 25 cm long), straight, rigid, hollow metal tube, and typically has a small light bulb mounted at the end.

[0005] During TEM, a surgeon uses tools configured for the rectoscope to access the affected region. This allows the surgeon to access the affected region without having to make incisions into the body, specifically the transanal cavity or colon, to access the affected cancerous area. This, thus, provides greater ease, and comfort for the patient, while also being a less expensive and less intrusive procedure than one involving surgical incisions to access the affected area. Furthermore, a surgical procedure involving surgical incisions is more demanding upon the body of a patient to recover from, as well as being a higher risk surgery for the patient, as incisions can increase the risk of infection and have other side effects. Thus, transanal endoscopic microsurgery (TEM) is a valuable surgical technique with a low complication rate for patients. In particular, TEM is an efficient method for patients with adenomatous rectal tumors and early rectal cancer.

[0006] With TEM surgery, auxiliary tools are introduced through the rectoscope cylinder and into transanal cavity. These auxiliary tools are used by doctors to remove and treat the affected areas. However, problems exist whereby it can be difficult for surgeons to use auxiliary tools in the transanal cavity. One problem is that surgeons have limited vision, as it is difficult to see into the transanal cavity when working on the affected area. Other such problems involve inserting the rectoscope into the transanal cavity, and maintaining a pressure seal so it is easy to work in the cavity, while keeping the transanal cavity in an expanded state.

[0007] In the prior art, rectoscopes were designed to include optical devices, allowing for a surgeon to closely see the affected cancerous area. In particular, United States Patent No. 6,458,077, Boebel et al., teaches a rectoscope that performs this function, as Boebel teaches a channel that serves to introduce an optical element. However, Boebel suffers from the second problem that surgeons have in regard to rectoscopes, which involves insertion of the rectoscope into the transanal cavity. Particularly, Boebel does not disclose an obturator tip that allows for easy insertion of the rectoscope.

[0008] To get a rectoscope comfortably into the transanal cavity, surgeons typically use an obturator. An obturator, which is the central removable core of a rectoscope, allows for the easy insertion of the tip into the anus or another orifice.

[0009] During proctoscopy, the rectoscope is lubricated and inserted into the rectum. The obturator typically has a rounded end which protrudes through the far opening of the instrument. When inserted into the transanal cavity, the obturator expands the transanal cavity, thus allowing the surgeon to more easily access the cavity.

[00010] In the prior art, if a surgeon wanted to view the transanal cavity, the obturator would have be withdrawn, so that once the obturator was removed, the surgeon would have an unobstructed view of the interior of the transanal cavity.

[00011] Thus, the prior art teaches a method and apparatus whereby a surgeon would have a series of steps: first the surgeon would use an obturator for easy insertion of the rectoscope into the transanal cavity; second, the surgeon would have to remove the obturator; and third, the surgeon would have to insert an optical element into the rectoscope for viewing the interior of the affected

transanal cavity. This series of steps is problematic and difficult for the surgeon to undertake.

[00012] Prior art designs attempted to solve this problem by developing a rectoscope that has removable parts. This allows a surgeon to mount an instrument with an obturator to the rectoscope. Once the transanal cavity was expanded, the surgeon would remove the obturator instrument and replace it with an instrument without an obturator, thus allowing for unobstructed access to the transanal cavity.

[00013] Using these methods, however, the surgeon would still have to first expand the transanal cavity using an obturator, remove the obturator, which is removable, while keeping the rectoscope lodged in the transanal cavity. The surgeon would then insert an optical device to find the affected area. This optical device would be removably linked to the rectoscope.

[00014] What is therefore desired is an invention that allows a surgeon to both expand the transanal cavity using the obturator and also to simultaneously view the affected area of the transanal cavity using an optical device. This makes it easier to find the affected area and to position the rectoscope accordingly, so that when a second optical device is inserted without the obturator and with auxiliary tools, the rectoscope is positioned well in relation to the affected area.

[00015] Furthermore, prior art such as Boebel discloses an insufflation channel in order to expand a body cavity. Insufflation involves an inert, nontoxic gas, such as carbon dioxide, being introduced into a body cavity, to expand the cavity. Insufflation is a common method to introduce compressed air into the

transanal cavity, thus expanding the transanal cavity and reducing obstruction during investigative surgery.

[00016] While prior art, such as Boebel, discloses an insufflation channel, the prior art fails to disclose an insufflation channel in use with an obturator, or an obturator with a passage for insufflation. Rather, the prior art would require a surgeon to choose to apply either an insufflation channel or an obturator, but not an instrument that has both elements.

[00017] What is therefore desired is an invention that allows a surgeon to both insufflate a transanal cavity, while simultaneously using an obturator to expand the transanal cavity.

[00018] When a transanal cavity is insufflated, pressure builds up in the cavity. It is important to maintain the increased pressure in the cavity in order to maintain the transanal cavity in the expanded state. Problems would result if carbon dioxide or other inert gases, which were provided during the insufflation process, would leak out through the transanal cavity. In particular, Boebel introduces a sealing mechanism to prevent the pressurized gas from being displaced from the transanal cavity.

[00019] However, Boebel, as well as other designs in the prior art, have limitations as problems result when auxiliary tools are used. In particular, when auxiliary tools are used, pressure can be released, which may cause the expanded transanal cavity to decrease in size.

[00020] The design of Boebel teaches a sealing element with a carrier element, but does not teach a sealing element that is fused into the mounting piece. Boebel further does not disclose a gasket and valve type fused assembly

whereby the auxiliary tools continue through gaskets and valves in order to form a sealing chamber.

[00021] What is desired therefore is to have a gasket and valve pressure system whereby the auxiliary tools can be used easily and without losing the sealing pressure in the transanal cavity as well as in the housing of the rectoscope. It is further desired to have an obturator used with an optical device as well as having an obturator used simultaneously with an insufflation channel.

SUMMARY OF THE INVENTION

[00022] Accordingly, it is an object of the present invention to provide a medical instrument and method that allows a surgeon to both expand the transanal cavity using the obturator and also to simultaneously view the affected area of the transanal cavity using an optical device. It is a further object of the invention to provide a medical instrument and method that allows a surgeon to both insufflate a transanal cavity, while simultaneously using an obturator to expand the transanal cavity. It is a further object of this invention to provide an apparatus and method for a pressure system assembly having gaskets and valves, whereby auxiliary tools can be used easily and without losing the sealing pressure in the transanal cavity as well as in the housing of a rectoscope.

[00023] These and other objectives are achieved by providing a medical instrument comprising an insufflation channel comprising an insufflation channel, a tube for insertion of an optical device, and an obturator tip, said obturator tip having a first passage for receiving at least a portion of said insufflation channel and a second passage for receiving at least a portion of said tube.

[00024] The medical instrument may further allow for insufflation to occur simultaneously with insertion of the obturator tip into a transanal cavity. Furthermore, the tube in the medical instrument requires no special light source for the optical device.

[00025] In preferred embodiments, the insufflation channel and tube are fixed into the obturator tip. This may occur at the proximal or distal end of the insufflation channel and tube.

[00026] The medical instrument further may comprise a housing, which is typically in the shape of a cylinder. The medical instrument further may comprise a boss element, the boss element able to attach to the housing. The boss element is cap shaped in a preferred embodiment. Further, the housing may substantially house the insufflation channel and the tube, whereby the insufflation channel and tube are housed inside the housing cylinder.

[00027] In a preferred embodiment, the obturator tip is bullet-shaped.

[00028] The medical instrument may also include a handle. Uses for the medical instrument include, but are not limited to, insufflation and expansion of a transanal cavity.

[00029] In a second embodiment, the present invention provides a medical instrument comprising an insufflation channel comprising a housing, a tube for insertion of an optical device, and a boss element, the boss element receiving the insufflation channel and tube, and the boss element attaching to the housing to seal the pressure within the housing.

[00030] The medical instrument may further comprise a pressure system allowing for insertion of auxiliary tools through the boss element and into the housing, while maintaining the pressure in the housing.

[00031] In a preferred embodiment, the pressure system has at least one gasket and at least one valve used in series. In other embodiments, the pressure system has one or more gaskets and in other embodiments the pressure system has one or more valves. It is preferable that the gaskets and valves work together to form a pressure chamber allowing for the insertion of auxiliary tools.

[00032] The boss element of the medical instrument may be cap-shaped. The tube in the medical instrument is typically straight and the auxiliary tools are curved.

[00033] In a third embodiment of the present invention, the present invention provides a surgical kit comprising a first medical instrument having an insufflation channel, a tube for insertion of an optical device, and an obturator tip, the obturator tip having a first passage for receiving at least a portion of the insufflation channel and a second passage for receiving at least a portion of the tube; a second medical instrument having an insufflation channel, a tube for insertion of an optical device, and a boss element, the boss element receiving the insufflation channel and the tube; and a housing for receiving the first medical instrument and the second medical instrument, wherein only one of the first medical instrument and the second medical instrument can be received by the housing at a given time, and wherein the boss element of the second medical instrument seals the pressure within the housing.

[00034] The second medical instrument allows for insertion of auxiliary tools through the boss element of the second medical instrument into the housing, while maintaining the pressure in the housing.

[00035] In preferred embodiments, the housing is preferably in the shape of a cylinder, and preferably the distal end of the housing is angled relative to the longitudinal axis of the housing.

[00036] The housing may have a locking mechanism to lock the housing into the first medical instrument or into the second medical instrument. The housing can substantially house the first or second medical instrument.

[00037] In preferred embodiments, the auxiliary tools are curved and the tube in both the first and second medical instruments is straight.

[00038] The fourth embodiment of the present invention provides a method for introducing a medical instrument into a transanal cavity, the medical instrument comprising a rectoscope attached to an obturator, wherein the obturator is used for expansion of the transanal cavity, and wherein the obturator has a first passage for insufflation and a second passage for an optical device.

[00039] The method further comprises the step of removing the obturator from the medical instrument, while maintaining the rectoscope in the transanal cavity.

[00040] The method further comprises the step of attaching a working element to the rectoscope, the working element having a sealing mechanism that allows sealing the pressure in the rectoscope. The sealing mechanism allows for inserting tools through the rectoscope and into the transanal cavity while maintaining the pressure in the rectoscope and the transanal cavity.

[00041] The sealing mechanism preferably has at least at least one gasket and at least one valve used in series. The sealing mechanism can involve more than one gasket and valve in order to conduct the sealing mechanism.

[00042] The fifth embodiment of the present invention provides a seal system comprising a surface having a passage with a proximal end and a distal end, the passage having a first member on the proximal end of the passage and a second member on the distal end of the passage; wherein the passage maintains a pressure drop between its proximal and distal ends, and wherein the passage is adapted to receive instruments.

[00043] The seal system has a first position and a second position, wherein in the first position the second member is closed to maintain the pressure drop in the passage, and wherein in the second position an instrument is inserted into the passage through the first member and the second member, opening the second closure member, whereupon the first member seals to maintain the pressure drop in said passage.

[00044] The seal system further may have a third position whereby the instrument is removed from the passage, and whereupon when the instrument is removed through the second member, but not the first member, the second member closes to maintain the pressure drop in the passage.

[00045] The seal system may involve the first member being a gasket and the second member being a valve.

[00046] Advantages for the above embodiments involve a new surgical kit with the ability to popularize transanal endoscopic excisions, thereby becoming easier, less expensive and more feasible in hospitals around the world.

[00047] Other objects of the invention and its particular features and advantages will become more apparent from consideration of the following drawings and accompanying detailed description. It should be understood that the detailed description and specific examples, while indicating the preferred

embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[00048] FIG. 1 is a perspective view of the surgical kit including the housing and medical instruments of an embodiment of the present invention;

[00049] FIG. 2 is perspective view of the housing (rectoscope) of an embodiment of the present invention;

[00050] FIG. 3 is a right side view of the housing of FIG. 2 of the present invention;

[00051] FIG. 4 is a left side view of the housing of FIG. 2 of the present invention;

[00052] FIG. 5 is a perspective view of the medical instrument of an embodiment of the present invention;

[00053] FIG. 6 is a end view of the medical instrument of FIG. 5 of the present invention;

[00054] FIG. 7 is a scaled close-up view of FIG. 5 of the present invention focused on the obturator tip;

[00055] FIG. 8 is a perspective view of the medical instrument of a second embodiment of the present invention;

[00056] FIG. 9 is a left side view of the medical instrument shown in FIG. 8 of the present invention focused on the spring valves;

[00057] FIG. 10 is a right side view of the medical instrument shown in FIG. 8 of the present invention focused on the gaskets;

[00058] FIG. 11 is a perspective view of an assembly of the present invention involving the housing (rectoscope) and medical instrument of FIG. 5 of an embodiment of the present invention;

[00059] FIG. 12 is a perspective view of an assembly of the present invention involving the housing (rectoscope) and medical instrument of FIG. 8 of an embodiment of the present invention;

[00060] FIG. 13 is a perspective view of the assembly with housing connected to the medical instrument of FIG. 8 of an embodiment of the present invention further showing the use of auxiliary tools;

[00061] FIG. 14 is a close-up view of the perspective view of FIG. 13 where the pressure system (gasket/valve) and linking mechanism of the housing to medical instrument of an embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[00062] Referring to FIG. 1, a surgical kit assembly 1000 in accordance with an embodiment of the present invention is shown. This surgical kit assembly 1000 provides a method and apparatus for transanal endoscopic surgical techniques.

[00063] FIG. 1 shows medical instrument 100, rectoscope 130, and medical instrument 180. Medical instrument 100 includes obturator tip 110, insufflation channel 120, and tube 115. Tube 115 does not require a special light source that is usually required for optical devices used with rectoscopes. Boss element 125 is shown holding insufflation channel 120 and tube 115, forming the

structure of medical instrument 100. In a preferred embodiment, insufflation channel 120 and tube 115 are shown parallel, or substantially parallel, to each other.

[00064] In a preferred embodiment, tube 115 is straight whereby auxiliary tools 1500 (shown in FIG. 13) are curved. The invention eliminates the need for a special angled telescope and instead any preexisting 5mm diameter, 10 mm diameter or other diameter telescope can be used.

[00065] FIG. 1 further shows obturator tip 110 containing first passage 112, which is shown inside the body of obturator tip 110. First passage 112 is shown corresponding to insufflation channel 120 which is shown running in an axial direction. Insufflation channel 120 has an end portion 122, which may be angled away from boss element 125, so that it is easier to introduce gases and insufflate transanal cavity 1100 (not shown). Insufflation channel 120 is shown going through boss element 125, which holds insufflation channel 120. In a preferred embodiment, insufflation channel 120 is sealed by boss element 125 so that pressure is not released from transanal cavity 1100 through the connection of the insufflation channel 120 and boss element 125. In another preferred embodiment, insufflation channel 120 is affixed to boss element 125.

[00066] Obturator tip 110 also contains second passage 114 corresponding to the distal end of tube 115, which is shown running in an axial direction parallel to insufflation channel 120. Second passage 114 is shown inside the body of obturator tip 110. Tube 115 is shown going through boss element 125. The end of tube 115 is shown to be element 118, which is the proximal side of tube 115. Tube 115 provides a means for insertion of an optical device 1200 (not shown). Optical device 1200 may be an endoscope, camera, or any such optical device used in the art. Optical device 1200 may be linked to a

computer, such that a view of transanal cavity 1100 may be displayed on a surgical monitor.

[00067] As such, obturator tip 110 has first passage 112 for receiving at least a portion of insufflation channel 120 and second passage 114 for receiving at least a portion of tube 115.

[00068] In a preferred embodiment, surgical kit 1000 may be used with any type of compatible endoscope and laparoscopic CO₂ insufflator for transanal surgical procedures.

[00069] In another preferred embodiment, tube 115 may be sealed by boss element 125 such that pressure is not released from transanal cavity 1100 through the connection of tube 115 and boss element 125. In another preferred embodiment, tube 115 may be affixed to boss element 125.

[00070] Boss element 125 may be shaped as a cap. The cap allows housing 130 to be connected to boss element 125, allowing for housing 130 to substantially house insufflation channel 120 and tube 115.

[00071] Optionally, medical instrument 100 has stability column 126, shown connecting obturator tip 110 and boss element 125. Stability column 126 is shown connected to handle 128, although handle 128 can be connected to boss element 125, whereby no stability column 126 is needed. Neither stability column 126 nor handle 128 are essential within the scope and spirit of the invention, but can be used in preferred embodiments. Handle 128 may be used to remove medical instrument 100 from housing 130. Stability column 126 may provide structural stability to medical instrument 100 and maintain a mechanical connection between obturator tip 110 and boss element 125.

[00072] FIG. 1 also shows housing 130; typically referred to as a rectoscope. Housing 130 has a proximal end 132 and a distal end 138. Distal end 138 may be angled in a direction that is not perpendicular to longitudinal axis X of housing 130. The angle may be up to 80 degrees from perpendicular, or any angle in which housing 130 may be inserted into transanal cavity 1100, and may still function as a rectoscope. In a preferred embodiment, the angle is approximately 15 degrees from perpendicular; allowing for comfortable insertion of housing 130 into transanal cavity 1100 (not shown).

[00073] Proximal end 132 of housing 130 may include a linking means 134 whereby medical instrument 100 and medical instrument 180 may be secured to housing 130. In preferred embodiments, both medical instrument 100 and medical instrument 180 may lock into housing 130; however, this is not required.

[00074] Proximal end 132 of housing 130 may also gradually increase in diameter, although this is not a requirement. Furthermore, internal diameter 135 of housing 130 is shown, whereby internal diameter 135 is equal throughout the axial length of housing 130. However, in other embodiments of the invention, internal diameter 135 may vary along the axial length of housing 130.

[00075] The housing 130 typically has a smooth or polished surface so that during insertion, transanal cavity 1100 is not irritated or damaged. Housing 130 may be made of various materials including metal alloys, polymers, and other such materials known in the art.

[00076] FIG. 1 further displays medical instrument 180. Medical instrument 180 may include an insufflation channel 182 connected to boss element 190. Insufflation channel 182 is shown with end piece 184, allowing for insufflation of transanal cavity 1100 (not shown).

[00077] Medical instrument 180 may further include a tube 188 connected to boss element 190, whereby tube 188 has end piece 186 for inserting an optical device. The optical device could be an endoscope, camera, or any such optical device used in the art. The optical device may be linked to a computer, such that a view of the transanal cavity 1100 (not shown) may be shown on a surgical monitor.

[00078] Furthermore, end piece 186 of tube 184 is shown providing a surgeon with a view of transanal cavity 1100. A piece of glass or prism may be inserted into tube end piece 186 or tube 188, allowing a surgeon to look at a direction perpendicular or substantially perpendicular to tube 188 while still having an unobstructed view of transanal cavity 1100.

[00079] Boss element 190 may further include gaskets 192, 194, and 196. More or fewer gaskets may be used in keeping with the scope and spirit of the invention. In the preferred embodiment shown, three gaskets are used.

[00080] Boss element 190 further includes spring valves 910, 920, and 930 (shown in FIG. 9). These spring valves typically correspond to gaskets 192, 194, and 196, as shown in FIG. 1. More or fewer spring valves may be used in keeping with the scope and spirit of the invention. In the preferred embodiment shown, however, three spring valves 910, 920, and 930 are used.

[00081] The gaskets 192, 194, and 196 and spring valves 910, 920, and 930 allow for auxiliary tools 1500 (shown in FIGS. 13 and 14) to be used by a surgeon within the transanal cavity 1100. The gaskets and spring valves allow for the use of auxiliary tools 1500 without losing pressure within the insufflated transanal cavity 1100. The spring valves 910, 920, and 930 open to the inside of housing 130, and can be popped open as auxiliary tools 1500 are inserted through boss 190 and into the internal part of housing 130.

[00082] In a preferred embodiment, tube 188 is sealed by boss element 190 such that pressure is not released from transanal cavity 1100 through the connection of tube 188 and boss element 190. In another preferred embodiment, tube 188 is affixed to boss element 190. Similarly, in a preferred embodiment, insufflation channel 182 is sealed by boss element 190 and may be affixed to boss element 190.

[00083] FIG. 2 shows a close up view of housing 130 whereby distal end 138 is shown angled and proximal end 132 is shown having a gradually increasing diameter. Distal end 138 is shown non-perpendicular to longitudinal axis X of housing 130. This allows for easier access to transanal cavity 1100.

[00084] FIG. 3 shows a left end view and FIG. 4 shows a right end view of housing 130, also known as the rectoscope. Internal diameter 135 is shown, whereby external diameter 310 is also shown being larger than internal diameter 135. Proximal end 132 contains linking means 134 which attaches housing 130 to medical instrument 100 and medical instrument 180. Different types of linking means 134 may be used including a screwing action, whereby a male part enters a female part. Other types of linking means 134 include suction, grooves which fit a male part into a female part, and any other types of coupling mechanisms known in the art that can removably connect housing 130 to medical instrument 100 and medical instrument 180.

[00085] FIG. 5 shows a perspective view of medical instrument 100. In particular, FIG. 5 focuses on obturator tip 110. Obturator tip 110 may include a first passage 112, which is shown inside the body of obturator tip 110. Exit point 520 is shown whereby at this point, carbon dioxide or other inert gases are insufflated into transanal cavity 1100.

[00086] FIG. 5 also focuses on second passage 114 corresponding to the distal end of tube 115. Second passage 114 has exit point 510, whereby at this portion of obturator 110, an optical device can be used to see the affected area of transanal cavity 1100. This arrangement allows a surgeon to both insufflate a transanal cavity 1100 while using obturator 110 to expand the cavity as well, while simultaneously using tube 115 having an optical device to view the affected area.

[00087] In another embodiment of the invention, medical instrument 100 can have obturator tip 110 and insufflation channel 120, but not contain tube 115. In another embodiment of the invention, medical instrument 100 can have obturator tip 110 and tube 115, but not contain insufflation channel 120. However, the preferred embodiment includes the obturator tip 110, insufflation channel 120, and tube 115 as elements of medical instrument 100.

[00088] FIG. 6 shows an end view of medical instrument 100. Here end piece 122 of insufflation channel 120 is shown, whereby gases to insufflate transanal cavity 1100 may be introduced. Handle 128 is also shown, which may be used to insert and secure medical instrument 100 to the housing 130. Additionally, handle 128 may be used to introduce medical instrument 100, with housing 130 attached, into the transanal cavity 1100.

[00089] FIG. 7 displays a close-up view of obturator tip 110 enclosed in housing 130, whereby medical instrument 100 is shown substantially covered by housing 130. Here, insufflation channel 120 is shown corresponding to first passage 112 of obturator tip 110, and tube 115 is shown corresponding to second passage 114 of obturator tip 110. Obturator tip 110 is also shown whereby housing 130 has an angled distal end 138 supporting the weight of obturator tip 110.

[00090] FIG. 8 shows medical instrument 180. Here, the focus is on the pressure system 1600 (not shown in figures) that contains a combination of gaskets and spring valves.

[00091] Pressure system 1600, also known as a port valve system, allows for auxiliary tools 1500 to be used with a rectoscope 130 and maintains a pressure seal. The pressure is maintained in transanal cavity 1100 when a surgeon uses auxiliary tools 1500 to treat affected cancerous area in transanal cavity 1100.

[00092] Pressure system 1600 uses different types of gaskets and valves. The valves shown in FIG. 9 are spring valves 910, 920, and 930, but can also be other types of valves, such as solenoid valves, two-way and three-way valves, ball valves, hydraulic/pneumatic valves, and other valve systems understood in the art.

[00093] FIG. 9 shows a view of spring valves 910, 920, and 930 and FIG. 10 shows their corresponding gaskets 196, 192, and 194. In a preferred embodiment of the invention, gaskets 196, 192, 194 are shown corresponding to valves 910, 920, 930, although this is not required. Spring valves 910, 920, and 930 typically open to internal area 1800 of housing 130 (shown in FIG. 14).

[00094] FIGS. 11-12 show an assembly of surgical kit 1000, whereby medical instrument 100 and medical instrument 180, are shown assembled within housing 130. Specifically, FIG. 11 shows surgical kit 1000 whereby insufflation channel 120 and tube 115 of medical instrument 100 are shown substantially enclosed by housing 130. FIG. 12 shows insufflation channel 182 and tube 188 of medical instrument 180, substantially enclosed by housing 130.

[00095] FIGS. 13-14 show medical instrument 180 assembled with the housing 130, whereby elements of pressure system 1600 are shown allowing use of auxiliary tools 1500.

[00096] In FIG. 13, auxiliary tool 1500 is shown going through gasket 194/196, and further through housing 130. This allows the end of auxiliary tool 1500 to reach transanal cavity 1100 and allows a surgeon to treat the affected section of transanal cavity 1100.

[00097] FIG. 14 shows a close-up cross-sectional view of the sealing mechanism of pressure system 1600 whereby a pressure chamber 1700 is formed. Here, auxiliary tool 1500 is shown entering gasket 192/194/196. Gasket 192/194/196 includes air lock elements 1420 and 1430, which provide a seal around auxiliary tool 1500 to prevent gas from seeping back out of internal area 1800 of housing 130, and/or transanal cavity 1100. As the auxiliary tool 1500 is inserted through the pressure chamber 1700, spring valve 1410 is opened via the pressure of the auxiliary tool 1500. After auxiliary tool 1500 passes through spring valve 1410, auxiliary tool 1500 passes into internal area 1800 of housing 130. Auxiliary tool 1500 can then be pushed through internal area 1800 of housing 130 until it reaches the distal end 138 of housing 130. Auxiliary tool 1500 then passes distal end 138 and is applied to the affected area of transanal cavity 1100. This allows the surgeon to access the affected tumor.

[00098] Pressure chamber 1700 is formed via the combination of gasket 192/194/196 and spring valve 1410. This creates the sealing means and prevents pressure from leaving housing 130, thus keeping transanal cavity 1100 insufflated and expanded, allowing for easier access for the surgeon to conduct the endoscopic surgery. Furthermore, the sealing means is a novelty of the present invention, as the pressure system 1600 involves an "air lock" using spring valve 1410 and gasket 192/194/196 in series. When auxiliary tools 1500

are not inserted into housing 130, spring valve 1410 remains in a closed position, thus sealing internal area 1800 of housing 130 from outside atmospheric pressure. This maintains the pressure difference in pressure chamber 1700 when no instruments are inserted into pressure chamber 1700.

[00099] When auxiliary tool 1500 is inserted into pressure chamber 1700, auxiliary tool 1500 first goes through gasket 192/194/196, which includes air lock elements 1420 and 1430. Auxiliary tool 1500 then goes through spring valve 1410, causing spring valve 1410 to open. At this point, air lock elements 1420 and 1430 function to provide a seal, thus providing an "air lock" and preventing pressure in internal area 1800 of housing 130 from escaping. This maintains the pressure difference in pressure chamber 1700 when an instrument 1500 is inserted into pressure chamber 1700.

[000100] When auxiliary tool 1500 is removed, it first is pulled back through spring valve 1410. As auxiliary tool 1500 is fully pulled through spring valve 1410, the spring valve 1410 closes. This prevents pressure from being released and maintains the pressure difference in pressure chamber 1700 when an instrument is through the gasket 192/194/196, but not the valve 1410.

[000101] Once spring valve 1410 has closed, air lock elements 1420 and 1430 are released, so that auxiliary tool 1500 can be pulled through gasket 192/194/196. Thus, pressure system 1600 remains air tight both when spring valve 1410 is in an open or closed position, and functions as an "air lock."

[000102] Thus, a surgeon can insert a first auxiliary tool 1500 into a gasket, remove first auxiliary tool 1500, and insert a second auxiliary tool into the same gasket without losing pressure in internal area 1800 of housing 130. A surgeon can thus use a plethora of different auxiliary tools 1500 in a surgery

without having each gasket correspond to an individual auxiliary tool, providing increased flexibility during surgery.

[000103] FIG. 14 also shows insufflation channel 182 and tube 188 going through the internal area 1800 of housing 130. These elements lead to the affected transanal cavity 1100, as insufflation channel 182 provides for insufflation and tube 188 provides for viewing of the affected area of transanal cavity 1100. This allows the surgeon to keep transanal cavity 1100 expanded while being able to view the affected area via the optical device in tube 188.

[000104] In preferred embodiments, insufflation channel 120 is typically thinner than tube 115 for optical instruments. Insufflation channel 120 is also known as an irrigation channel.

[000105] Preferred embodiments also allow for auxiliary tools 1500 to be flexible. Also insufflation channels 120 and 182 and tubes 115 and 188 can be flexible as well, allowing for ease of use of endoscopic surgery.

[000106] Surgical kit 1000 and medical instruments 100 and 180, as well as housing 130 can be made of metals, alloys, plastics, polymers, and other such materials understood to be used for surgical devices.

[000107] In preferred embodiments, boss element 125 of medical instrument 100 and boss element 190 of medical instrument 180 have a larger diameter than housing 130, so that housing 130 can be inserted into medical instrument 100 and medical instrument 180, respectively. Another advantage to the present invention is that medical instrument 100 can be removed from housing 130 without losing insufflation pressure in transanal cavity 1100 and in internal area 1800 of housing 130.

[000108] The present invention further comprises a method using medical devices 100 and 180 in conjunction with housing 130. The method for transanal surgical procedure comprises the steps of introducing a medical instrument 3000 (no ref. no. 3000 in drawings) into transanal cavity 1100, medical instrument 3000 having a rectoscope 130 attached to obturator element 110, wherein obturator element 110 is used for expansion of transanal cavity 1100, and wherein obturator element 110 has a passage 112 for insufflation. The obturator also has a second passage 114 for viewing the affected area of transanal cavity 1100. An insufflation channel 120 and tube 115 correspond to the first passage 112 and second passage 114 of the obturator respectively. Tube 115 allows the surgeon to locate the affected area and position rectoscope 130 such that it is in the correct position for accessing the affected area.

[000109] The method further can comprise removing obturator element 110 from medical instrument 3000, while maintaining the position of rectoscope 130 in transanal cavity 1100. This involves quickly performing this step such that pressure is not lost from transanal cavity 1100.

[000110] The method further comprises inserting a working element 180 into transanal cavity 1100, whereby working element 180 attaches to rectoscope 130, wherein working element 180 has a sealing mechanism that allows for inserting auxiliary tools 1500 into transanal cavity 1100 while maintaining pressure in transanal cavity 1100 and housing 130.

[000111] The method further can comprise the sealing mechanism of working device 180 using gaskets and valves. At least one gasket or valve component is used, and preferably the method involves using three corresponding gaskets and valves. The method further can comprises using gaskets and valves in series, such that pressure does not leave transanal cavity 1100 when auxiliary tools 1500 are used to access a tumor.

[000112] Further advantages of the present invention include popularizing transanal endoscopic excisions, thereby becoming easier, less expensive and more feasible in hospitals around the world.

[000113] While the invention has been specifically described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not of limitation and that various changes and modifications in form and details can be made thereto, and the scope of the appended claims should be construed as broadly as the prior art will permit.

[000114] The description of the invention is merely exemplary in nature, and thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.

1. A medical instrument comprising:
 - an insufflation channel;
 - a tube for insertion of an optical device; and
 - an obturator tip, said obturator tip having a first passage for receiving at least a portion of said insufflation channel and a second passage for receiving at least a portion of said tube.
2. The medical instrument of Claim 1, wherein said tube requires no artificial light source for said optical device.
3. The medical instrument of Claim 1, wherein said insufflation channel and said tube are fixed into said obturator tip.
4. The medical instrument of Claim 1, further comprising a housing.
5. The medical instrument of Claim 4, further comprising a boss element attached to said insufflation channel and said tube, said boss element able to attach to said housing.
6. The medical instrument of Claim 5, wherein said housing substantially houses said insufflation channel and said tube.
7. The medical instrument of Claim 1, wherein said obturator tip is bullet-shaped.
8. The medical instrument of Claim 1, wherein said boss element is cap-shaped.

9. The medical instrument of Claim 1, further comprising a handle.
10. The medical instrument of Claim 1, wherein the medical instrument is used to insufflate and expand a transanal cavity.
11. A medical instrument comprising:
 - a housing;
 - an insufflation channel;
 - a tube for insertion of an optical device; and
 - a boss element, said boss element receiving said insufflation channel and said tube, said boss element attaching to said housing to seal the pressure within said housing.
12. The medical instrument of Claim 11, further comprising a pressure system, said pressure system allowing for insertion of auxiliary tools through said boss element into said housing, while maintaining the pressure in said housing.
13. The medical instrument of Claim 12, wherein said pressure system has at least one gasket and at least one valve used in series.
14. The medical instrument of Claim 12, wherein said pressure system has one or more gaskets.
15. The medical instrument of Claim 12, wherein said pressure system has one or more valves.
16. The medical instrument of Claim 11, wherein said boss element is cap-shaped.

17. The medical instrument of Claim 11, wherein said tube is straight.
18. The medical instrument of Claim 12, wherein said auxiliary tools are curved.
19. A surgical kit comprising:
 - a first medical instrument having an insufflation channel, a tube for insertion of an optical device, and an obturator tip, said obturator tip having a first passage for receiving at least a portion of said insufflation channel and a second passage for receiving at least a portion of said tube;
 - a second medical instrument having an insufflation channel, a tube for insertion of an optical device, and a boss element, said boss element receiving said insufflation channel and said tube;
 - a housing for receiving said first medical instrument and said second medical instrument, wherein only one of said first medical instrument and said second medical instrument can be received by said housing at a given time, and wherein said boss element of said second medical instrument seals the pressure within said housing.
20. The surgical kit of Claim 19, wherein said second medical instrument allows for insertion of auxiliary tools through said boss element of said second medical instrument into said housing, while maintaining the pressure in said housing.
21. The surgical kit of Claim 19, wherein said housing is shaped as a cylinder, and wherein the distal end of said housing is angled relative to the longitudinal axis of said housing.

22. The surgical kit of Claim 19, wherein said housing has a locking mechanism to lock said housing into said first medical instrument or into said second medical instrument.
23. The surgical kit of Claim 19, wherein said housing substantially houses said first medical instrument or said second medical instrument.
24. The surgical kit of Claim 19, wherein said auxiliary tools are curved.
25. The surgical kit of Claim 19, wherein said tube for insertion of an optical device of said first medical instrument and said second medical instrument is straight.
26. A method for a transanal surgical procedure comprising the steps of:
introducing a medical instrument into a transanal cavity, said medical instrument comprising a rectoscope attached to an obturator, wherein said obturator is used for expansion of said transanal cavity, and wherein said obturator has a first passage for insufflation and a second passage for an optical device.
27. The method of Claim 26, further comprising removing said obturator from said medical instrument, while maintaining said rectoscope in said transanal cavity.
28. The method of Claim 27, further comprising attaching a working element to said rectoscope, said working element having a sealing mechanism that allows sealing the pressure in said rectoscope.
29. The method of Claim 28, wherein said sealing mechanism allows for inserting tools through said rectoscope and into said transanal cavity while maintaining the pressure in said rectoscope and said transanal cavity.

30. The method of Claim 29, wherein said sealing mechanism has at least at least one gasket and at least one valve used in series.

31. A seal system comprising:

 a surface having a passage with a proximal end and a distal end, said passage having a first member on the proximal end of said passage and a second member on the distal end of said passage;

 wherein said passage maintains a pressure drop between its proximal and distal ends, and wherein said passage is adapted to receive instruments.

32. The seal system of Claim 31 having a first position and a second position,

 wherein in said first position said second member is closed to maintain the pressure drop in said passage,

 and wherein in said second position an instrument inserted into said passage through said first member and said second member, opening said second closure member, whereupon said first member seals to maintain the pressure drop in said passage.

33. The seal system of Claim 32, wherein in a third position said instrument is removed from said passage, and whereupon when said instrument is removed through said second member, but not said first member, said second member closes to maintain the pressure drop in said passage.

34. The seal system of Claim 31, wherein said first member is a gasket.

35. The seal system of Claim 31, wherein said second member is a valve.

1 Abstract

A surgical kit and method for transanal endoscopic surgical techniques. A medical instrument having an obturator tip with an insufflation channel and a tube for an optical device. A medical instrument having an insufflation channel and tube for an optical device, whereby a pressure system is used, such that auxiliary tools can be used to remove a tumor from a transanal cavity. A method for using the surgical kit and medical instruments individually and/or in sequence, whereby said surgical kit and medical instruments are used to access the transanal cavity by using a natural opening of the body.

2 Representative Drawing

Fig. 1

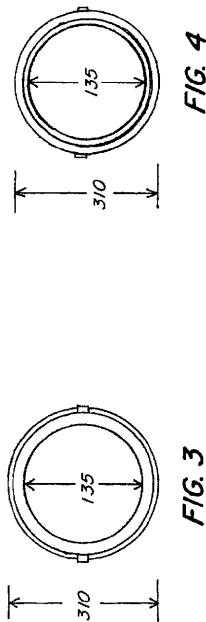
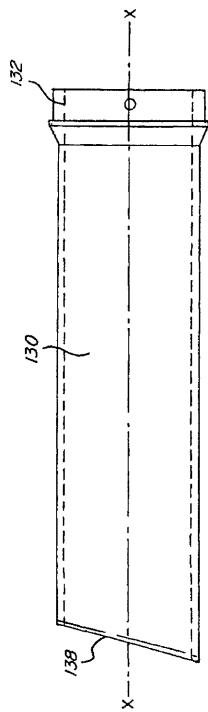
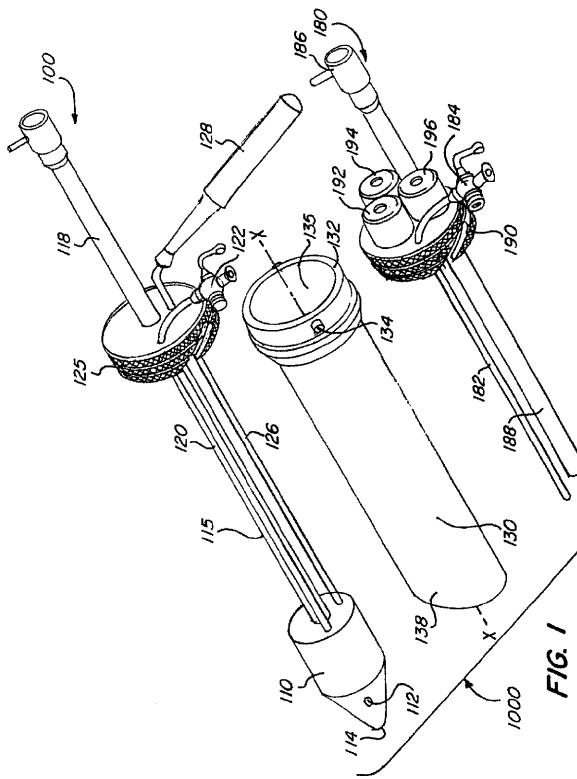
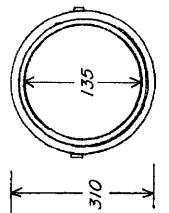
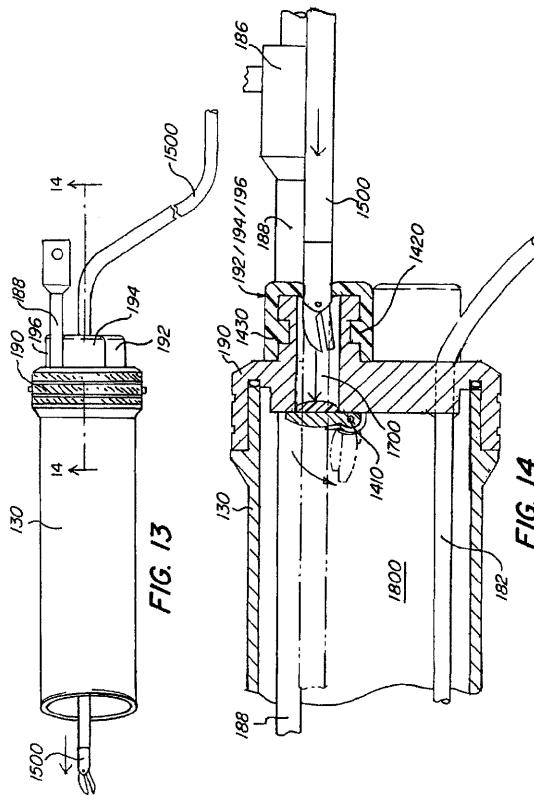
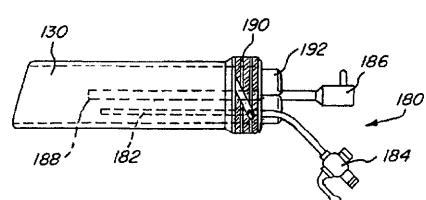
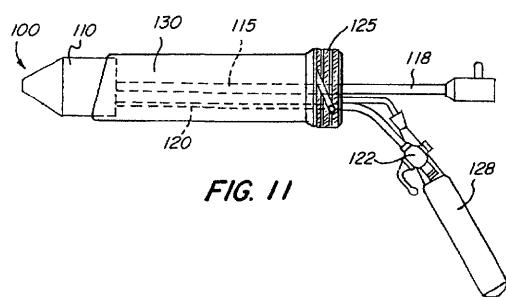
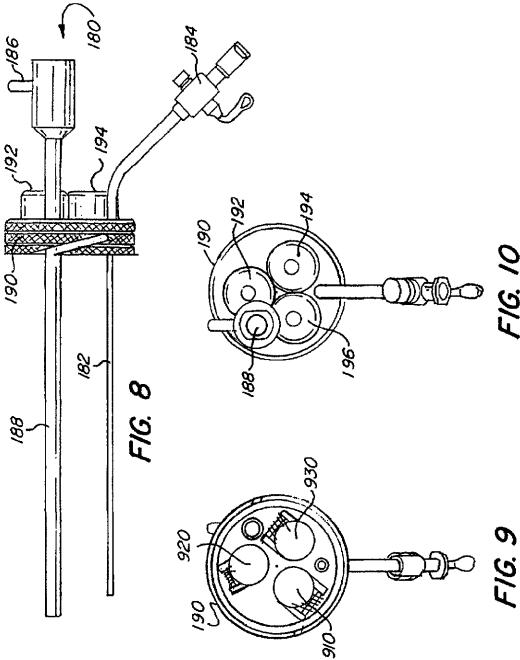
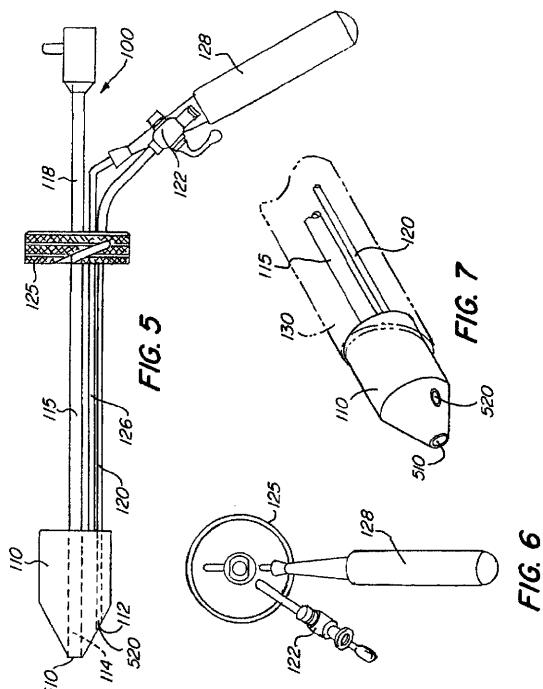
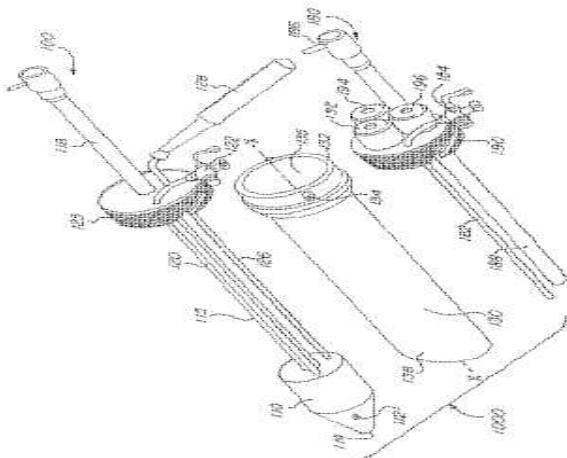










FIG. 2

FIG. 4



专利名称(译)	经肛门内窥镜小手术的手术肛门镜 (TRANSANALENDOSCOPIC)		
公开(公告)号	JP2009195687A	公开(公告)日	2009-09-03
申请号	JP2009014716	申请日	2009-01-26
[标]申请(专利权)人(译)	卡尔斯巴德东通门难EM为主下来托哥赛车游戏		
申请(专利权)人(译)	卡尔Sutotsu GMBH UND CO-卡格		
[标]发明人	エフセルジオピーレガダス		
发明人	エフ・セルジオ・ピー・レガダス		
IPC分类号	A61B1/00 A61B1/303 A61B1/307 A61B1/31 A61B17/32		
CPC分类号	A61B17/3462 A61B1/31 A61B17/3474 A61B17/3498 A61B90/361 A61B2017/3445 A61B2017/3449 A61B2017/3452 A61B2017/3454 A61B2017/3466		
FI分类号	A61B1/00.320.A A61B1/30 A61B1/00.334.A A61B17/32 A61B1/01 A61B1/01.511 A61B1/018.511 A61B1/303 A61B1/31 A61B17/94		
F-TERM分类号	4C061/AA05 4C061/BB00 4C061/CC00 4C061/DD00 4C061/GG22 4C061/HH56 4C061/JJ06 4C160/FF19 4C160/MM43 4C161/AA05 4C161/BB00 4C161/CC00 4C161/DD00 4C161/GG22 4C161/HH56 4C161/JJ06		
代理人(译)	渡边 隆 村山彦		
优先权	61/062162 2008-01-24 US		

摘要(译)

要解决的问题：提供一种医疗设备和方法，其能够允许外科医生使用闭孔器对经肛门腔充气并且使用光学装置同时可视化经肛门腔的患病部分。类型代码：A1本发明涉及用于经肛门内窥镜手术的外科套件和方法。该医疗装置具有带有吹气通道的闭孔尖端和用于该光学装置的管。医疗装置具有吹入通道和用于光学装置的管，使用压力系统并且使用辅助工具从经肛门腔移除肿瘤。本发明涉及一种单独和/或连续使用手术套件和医疗装置的方法，其中手术套件和医疗装置用于通过使用身体的固有开口进入经腔。点域1

